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Determination of Thermal Properties of Unsmooth Si Nanowires
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We estimate the thermal properties of unsmooth Si nanowires, considering key factors such as size (diameter),

surface texture (roughness) and quantum size effects (phonon states) at different temperatures. For nanowires

with a diameter of less than 20 nm, we highlight the importance of quantum size effects in heat capacity cal-

culations, using dispersion relations derived from the modified frequency equation for the elasticity of a rod.

The thermal conductivities of nanowires with diameters of 37, 56, and 115 nm are predicted using the Fuchs–

Sondheimer model and Soffer’s specular parameter. Notably, the roughness parameters are chosen to reflect the

technological characteristics of the real surfaces. Our findings reveal that surface texture plays a significant role

in thermal conductivity, particularly in the realm of ballistic heat transfer within nanowires. This study provides

practical recommendations for developing new thermal management materials.

DOI: 10.1088/0256-307X/41/1/016301

Research of heat transfer in low-dimensional systems

is attracting increasing interest owing to the special ther-

mal properties that emerge at the nanoscale, challenging

the applicability of classical heat conduction laws, such as

Fourier’s law, which hold for macroscopic systems. Ex-

tensive research has shown unique thermophysical prop-

erties of silicon nanowires (SiNWs). Earlier experimen-

tal studies [1] indicated that the thermal conductivity of

SiNWs is approximately two orders of magnitude lower

than that of their bulk counterparts. In addition, as the

diameter of SiNWs shrinks, their thermal conductivity de-

creases. Experiments have shown that thermal conduc-

tivity peaks occur at temperatures of approximately 210,

160, and 130K for SiNWs with diameters of 37, 56, and

115 nm, respectively. This behavior contrasts with macro-

scopic silicon, where the peak thermal conductivity occurs

at approximately 25K. The key factor behind this discrep-

ancy is the heightened importance of phonon boundary

scattering over phonon–phonon scattering as the diameter

of nanowires decreases.

Thermal conductivity measurements for SiNWs have

also been conducted by varying the size (diameter) and

surface roughness. [2] The results revealed that the surface

roughness significantly affects the thermal conductivity:

higher roughness correlates with lower conductivity. The

surface texture affects the scattering of phonons at bound-

aries, which is essential for thermal conduction. High-

resolution TEM images were analyzed using spectroscopic

methods to accurately determine the surface roughness. [3]

Three roughness parameters, i.e., root mean square, cor-

relation length, and power spectrum, were measured, and

their relationships as well as their effects on thermal con-

ductivity were analyzed. The data show that the surface

roughness has a more pronounced impact on the thermal

conductivity of SiNWs than the diameter does.

Moreover, the phonon density of states in nanowires

deviates from that in bulk materials (massive rods) owing

to quantum size effects. Pochhammer’s 1876 work pro-

vided solutions, in the form of transcendental frequency

equations, to elasticity equations [4] for tension and bend-

ing waves in infinitely long cylindrical rods with free sur-

faces. The complex branching of these equations yields

relationships among frequency, wave vector, phase veloc-

ity, and group velocity, which are necessary for calculat-

ing thermophysical properties. While several numerical

methods have been developed to approximate the branches

of Pochhammer’s equations for different wave modes, [5,6]

these methods often result in rough approximations and

sometimes lack solutions. In the past decade, these elas-

tic dispersion equations have been revisited to obtain the

thermophysical properties of phonons in low-dimensional

structures. [7,8]

In this Letter, we present a modern numerical algo-

rithm to solve the phonon dispersion relations in nanowires

and, for the first time, determine the density of states for

confined phonons in SiNWs. Our calculations reveal that

for SiNWs with diameters smaller than 20 nm, quantum

confinement plays a significant role in the phonon density

of states. For SiNWs larger than 20 nm in diameter, us-

ing the bulk density of states obtained from first principles

proves to be sufficiently accurate.

A common approach to consider the effects of size

on thermal conductivity in nanowires employs the Fuchs–

Sondheimer model, [9] which solves the Boltzmann trans-

port equation for confined structures such as rods or films

and yields the 𝐹 function, an expression indicating how the

mean free path in a confined structure is reduced compared

with that in a bulk sample. [10] Other methodologies, such

as the Monte Carlo method, [11,12] nonequilibrium molec-

ular dynamics (NEMD) simulations, [13–16] mathematical
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modeling [17,18] and the nonequilibrium Green’s function

(NEGF) method, [19] are also used for calculating thermal

conductivity but come with their own limitations and diffi-

culties when applied to confined structures and when wave

effects are considered.

The surface texture of SiNWs can vary significantly

depending on the fabrication technique employed. Exper-

imental evidence also confirms that this surface topogra-

phy significantly affects the thermophysical properties of

the nanowires. [2,3] A major problem is to accurately in-

corporate the complex surface texture of these real-world

rough boundaries into our models. In this work, we com-

pare the classical mathematical model for roughness with

actual surface data, [2,3] thus establishing a more optimized

model for calculating thermal conductivity.

Thus, when studying the thermophysical properties of

nanowires, several key factors must be considered: the

influence of quantum confinement on phonon dispersion,

the influence of size constraints on phonon diffusion, the

impact the real surface texture (roughness) on phonon

boundary scattering and temperature variations.

The elastic wave equation [20,21] can be written in vec-

tor form as

𝜕2𝑢

𝜕𝑡2
= 𝑐2T∇2𝑢+ (𝑐2L − 𝑐2T)∇(∇ · 𝑢), (1)

where 𝑢 is the displacement vector, 𝑐L = (𝜆 + 2𝜇)/𝜌 and

𝑐T = 𝜇/𝜌 are the velocities of longitudinal and transverse

acoustic waves, 𝜆 and 𝜇 are the Lamé constants character-

izing the elastic properties of the medium, 𝜌 is the density,

and 𝑡 denotes the time.

As shown in Fig. 1, there are three fundamental elas-

tic waves in an infinite rod. Torsional waves involve only

circumferential displacement, which is independent of an-

gle 𝜃. Longitudinal waves are axially symmetric waves

characterized by the presence of displacement components

in both the radial and axial directions. Flexural waves we

will examine in detail in the following involve motions that

depend on both 𝜃 and 𝑧.

(a)

(b)

(c)
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Fig. 1. Schematic diagram of elastic wave displacement

in a rod: (a) torsional wave, (b) longitudinal wave, and

(c) flexural wave.

Under the assumption of unstressed boundary condi-

tions on the free surface, the following frequency equations

can be obtained by derivation [21–23] of Eq. (1) for the three

fundamental types of waves.

Torsional waves:

𝑘T𝑅 · 𝐽0(𝑘T𝑅)− 2𝐽1(𝑘T𝑅) = 0. (2)

Longitudinal waves:

(𝑘2 − 𝑘2
T)

2 (𝑘L𝑅)𝐽0(𝑘L𝑅)

𝐽1(𝑘L𝑅)

+ 4𝑘2𝑘2
L

(𝑘T𝑅)𝐽0(𝑘T𝑅)

𝐽1(𝑘T𝑅)
= 2𝑘2

L(𝑘
2 + 𝑘2

T). (3)

Flexural waves:

𝐽1(𝛼)𝐽
2
1 (𝛽)[𝑓1Ψ

2
𝛽 + 𝑓2Ψ𝛼Ψ𝛽 + 𝑓3Ψ𝛽 + 𝑓4Ψ𝛼 + 𝑓5] = 0,

(4)

with

𝑓1 = 2(𝛽2 − 𝜉2)2, 𝑓2 = 2𝛽2(5𝜉2 + 𝛽2),

𝑓3 = 𝛽6 − 10𝛽4 − 2𝛽4𝜉2 + 2𝛽2𝜉2 + 𝛽2𝜉4 − 4𝜉4,

𝑓4 = 2𝛽2(2𝛽2𝜉2 − 𝛽2 − 9𝜉2),

𝑓5 = 𝛽2(−𝛽4 + 8𝛽2 − 2𝛽2𝜉2 + 8𝜉2 − 𝜉4),

where 𝛼 = 𝑘L𝑅, 𝛽 = 𝑘T𝑅 and 𝜉 = 𝑘𝑅 are dimen-

sionless wave numbers, 𝛹𝛼 = 𝛼𝐽0(𝛼)/𝐽1(𝛼) and 𝛹𝛽 =

𝛽𝐽0(𝛽)/𝐽1(𝛽) are auxiliary functions, 𝐽0 and 𝐽1 are Bessel

functions of the first kind.

The elastic dispersion relation is obtained using the

following equation:

𝜔2
el = 𝑐2T(𝑘

2 + 𝑘2
T) = 𝑐2L(𝑘

2 + 𝑘2
L). (5)

It is evident from dispersion relation (5) that 𝑘T and 𝑘L

can be either real or imaginary,

𝑘T and 𝑘L real, 𝜔el ≥ 𝑐L𝑘

𝑘T real, 𝑘L imaginary, 𝑐T ≤ 𝜔el < 𝑐L𝑘

𝑘T and 𝑘L imaginary, 𝜔el ≤ 𝑐T𝑘. (6)

Therefore, in the imaginary region, we need to rewrite

Eqs. (2)–(4) using the following equations:

𝐼𝑛(𝑥) = 𝑖−𝑛𝐽𝑛(𝑖𝑥), (7)

where 𝐼𝑛 is a modified Bessel function of the first kind.

We have proposed a unique numerical algorithm and

the corresponding code that we have made publicly avail-

able on GitHub (https://github.com/sxliu98/DS-Slover-

in-wire). The algorithm numerically solves Eqs. (2)–(7)

in MATLAB, utilizing the built-in function fzero to find

the roots of nonlinear equations. The algorithm operates

in both the real and imaginary regions. We identify the

roots of the equations under the minimum wave vector us-

ing a traversal method and then solve the equations layer

by layer, starting with these initial sets of solutions. The

advantages of this approach include greater accuracy com-

pared with previous approximate solutions, which skipped

modes, and improved computational efficiency relative to

exhaustive methods. The final result is a comprehensive

set of elastic dispersion curves we refer to as modes, for

the three types of waves in rods.

To accommodate the infinite nature of the elastic dis-

persion relation, we employ the Born–von Karman bound-

ary condition to account for the lack of periodicity. This

condition modifies each dispersive mode as follows: [24]

𝜔(𝑘) = [𝜔el(𝑘) · sin(𝑘𝑎/2)]/(𝑘𝑎/2). (8)
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This method sets to zero the group velocity of the low-

est frequency modes at the edge of the Brillouin zone

boundary for a symmetric simple cubic lattice. This

modification creates an effective standing wave within

each lattice cell for the lowest-frequency modes, enabling

us to use the elastic dispersion relations for rods as

approximations for the phonon dispersion relations in

nanowires.
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Fig. 2. Dispersion relations for SiNWs with diameters of (a) 2.7, (b) 5.4, and (c) 10.8 nm. Group velocities for

SiNWs with diameters of (d) 2.7, (e) 5.4, and (f) 10.8 nm.

For SiNWs with diameters of 2.7, 5.4, and 10.8 nm,

the dispersion relations are depicted in Figs. 2(a), 2(b),

and 2(c), respectively. The group velocity of each mode

is defined as the gradient of frequency. For SiNWs with

diameters of 2.7, 5.4, and 10.8 nm, the group velocity is

depicted in Figs. 2(d), 2(e), and 2(f), respectively.
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Fig. 3. DOSs of confined phonons in SiNWs and phonons

in bulk silicon.

Next, we determine the phonon density of states (DOS)

to estimate the impact of quantum size effects on phonon

states in confined structures. Using the dispersion rela-

tions, the DOS can be expressed as an integral over the

first Brillouin zone, [25]

DOS(𝜔) =
∑︁
𝑠

𝑔𝑠(𝜔) =
∑︁
𝑠

∑︁
𝑗

∫︁
BZ

𝑑𝑘

2𝜋
𝛿(𝜔 − 𝜔𝑗(𝑘)), (9)

where 𝑠 represents different polarizations, 𝑗 represents dif-

ferent modes, and 𝛿(𝑥) represents the Dirac delta func-

tion. Figure 3 shows the phonon DOS for SiNWs with

diameters of 2.7, 5.4, and 10.8 nm calculated using the

dispersion curves shown in Figs. 2(a), 2(b), and 2(c), re-

spectively. Additionally, Fig. 3 shows the phonon DOS for

bulk silicon obtained from first principles in a local den-

sity approximation using soft pseudopotentials and a plane

wave basis in Quantum Espresso software. [26] It is evident

that as the diameter of the nanowire increases, the phonon

DOS gradually approaches that of bulk silicon. Moreover,

for diameters of approximately 20 nm and more, the devi-

ation between the phonon DOS of the nanowire and that

of bulk silicon becomes negligible.

The phonon heat capacity [27] in SiNWs is determined

using the following frequency integration:

𝐶𝑣(𝑇, 𝑅) = 𝑘B

∑︁
𝑠

∫︁ 𝜔max,𝑠

𝜔min,𝑠

(︁ ℏ𝜔
𝑘B𝑇

)︁2

𝑛(𝑛+ 1)

· 𝑔𝑠(𝜔, 𝑅)𝑑𝜔, (10)

where 𝑠 denotes the different polarizations, and 𝑛 denotes

the Bose–Einstein equilibrium distribution:

𝑛(𝜔, 𝑇 ) = [exp(ℏ𝜔/𝑘B𝑇 )− 1]−1. (11)

For SiNWs with diameters of 2.7, 5.4, and 10.8 nm, the

heat capacity of confined phonons is illustrated in Fig. 4.

The dotted line in Fig. 5 represents the one-dimensional

heat capacity calculated using the classical Debye model

𝐶1𝐷 ≈ 1.736𝑇1/2

𝜋

√︀
2𝑘3

B/ℏ𝑐0𝑅, with 𝑅 denoting the diam-

eter of the nanowire. [28] It is evident that the phonon

heat capacity for SiNWs exhibiting phonon confinement

approaches the one-dimensional heat capacity at low tem-

peratures. This is due to the fact that flexural wave plays

016301-3

https://cpl.iphy.ac.cn/
https://cpl.iphy.ac.cn/article/10.1088/0256-307X/41
https://cpl.iphy.ac.cn/article/10.1088/0256-307X/41/1/016301
https://cpl.iphy.ac.cn/article/10.1088/0256-307X/41


Chinese Physics Letters 41, 016301 (2024)

a dominant role and conforms to the 𝑇 0.5 rule. However,

when the temperature increases, the phonon vibration in-

tensifies and the heat capacity of the nanowires behaves

more like a 3D model and becomes increasingly indepen-

dent of the nanowire diameter.
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Fig. 4. Heat capacity of confined phonons in SiNWs

with diameters of 2.7, 5.4, and 10.8 nm. The dotted line

shows the one-dimensional heat capacity based on the De-

bye model. [28]
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Fig. 5. Thermal conductivity (𝜅wire) of SiNWs depending

on diameter (𝑑) and rms roughness (𝜎) at a temperature

of 300K. The squares represent the experimental data, [1]

the circle represents the results based on NEMD [14,15] and

the triangle represents the results based on the NEGF

method. [19]

When the characteristic size of the SiNWs (denoted

as 𝑑) is smaller than the phonon mean free path, bound-

ary scattering becomes a pivotal factor influencing heat

transfer. This phenomenon is called the size effect. By

solving the steady-state Boltzmann transport equation de-

void of external forces and sources within the relaxation

time approximation, [29] a generalized expression for lattice

thermal conductivity of nanowires can be derived:

𝜅 =
1

3
𝑘B

∑︁
𝑠

∫︁ 𝜔max,𝑠

𝜔min,𝑠

(︁ ℏ𝜔
𝑘B𝑇

)︁2

𝑛(𝑛+ 1)

· 𝑔𝑠(𝜔) · 𝑣2𝜏 · 𝐹 (𝐾𝑛, 𝑝)𝑑𝜔, (12)

where 𝑠 denotes the different polarizations. 𝐹 (𝐾𝑛, 𝑝)

quantifies the reduction, attributable to the size effect, in

the free path length in nanowires compared with that in a

bulk sample: [10]

𝐹 (𝐾𝑛, 𝑝) =
𝑙wire

𝑙bulk
= 1− 12(1− 𝑝)2

𝜋

∞∑︁
𝑚=1

𝑚𝑝𝑚−1𝐺(𝐾𝑛, 𝑚),

(13)

where

𝐺(𝐾𝑛, 𝑚) =

∫︁ 1

0

√︀
1− 𝜉2

∫︁ ∞

1

exp
(︁
−𝑚𝜉𝑡

𝐾𝑛

)︁√𝑡2 − 1

𝑡4
𝑑𝑡𝑑𝜉.

(14)

Here, the Knudsen number 𝐾𝑛 and the specular parameter

𝑝 are the only factors affecting 𝐹 . The specular parameter

indicates the fraction of phonons that are reflected spec-

ularly/diffusely upon interaction with a rough surface. A

value of 𝑝 = 1 corresponds to purely specular scattering,

whereas 𝑝 = 0 corresponds to completely diffuse reflection.

The Knudsen number is associated with the wire diameter,

and parameter 𝑝 pertains to the roughness of the surface.

Assuming an infinite correlation length, Soffer [30] de-

rived a straightforward expression for the specular param-

eter as a function of the rms roughness 𝜎:

𝑝(𝑘, 𝜎, 𝜃) = exp(−4𝑘2𝜎2 cos2 𝜃), (15)

where 𝑘 denotes the phonon wave number and 𝜃 represents

the angle between the phonon momentum and the normal

to the idealized smooth surface boundary. In fact, 𝜎 is the

rms roughness of the vertical deviation of the true contour

from the average smooth surface.

Phonons in a crystal experience scattering through var-

ious mechanisms, [31] such as phonon–phonon interactions

and interactions with lattice impurities. It is notewor-

thy that scattering involving three or more phonons oc-

curs owing to the anharmonic nature of interatomic forces

and the discrete lattice structure. Scattering involving

four or more phonons becomes important only at tem-

peratures considerably above the Debye temperature for

silicon, which is 645K. [32] This is generally irrelevant for

practical applications, as these temperatures exceed the

operational range of most electronic devices.

Three-phonon scattering processes are primarily cate-

gorized into normal (N) and umklapp (U) processes. [33] In

these interactions, either two phonons combine to create

a third phonon, or a single phonon decays into two. The

U-process is unique in that momentum is not conserved;

the discrepancy in wave vectors leads to an inverse lat-

tice vector. In the N-process, both momentum and energy

are conserved. While normal phonon scattering does not

contribute to resistance, it is essential for calculating the

thermal conductivity in the Callaway model.

All these scattering mechanisms contribute to energy

exchange between lattice waves. Because each scattering

process is independent, the overall scattering time 𝜏 can be

determined using Matthiessen’s rule [34] given as follows:

𝜏−1 = 𝜏−1
N + 𝜏−1

U + 𝜏−1
imp, (16)

where 𝜏N denotes the relaxation time due to phonon–

phonon N-process interactions, 𝜏U denotes the relaxation

time due to phonon–phonon U-process interactions, and
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𝜏imp represents the relaxation time from interactions with

lattice impurities.

Many scientists have studied phonon–phonon

nonlinear interactions and proposed mathematical

expressions. [31–39] After comparing the results obtained

by applying these models to bulk silicon, we selected

a model that is more consistent with the experimental

results, [35] as described in the following.

Morelli et al. [37] proposed a model focused solely on

U-process interactions. This model employs the dimen-

sionless variable 𝑥 = ℏ𝜔/𝑘B𝑇 and is expressed as follows:

𝜏−1
U =

{︃
𝜏−1
T,U = 𝐵TU(𝑘B/ℏ)2𝑥2𝑇 3 exp(−𝜃T/3𝑇 ),

𝜏−1
L,U = 𝐵LU(𝑘B/ℏ)2𝑥2𝑇 3 exp(−𝜃L/3𝑇 ),

(17)

where the coefficients 𝐵TU and 𝐵LU for silicon are 1.0 ×
10−19 and 5.5× 10−20 c−1K−3, respectively. Additionally,

the characteristic temperatures 𝜃T and 𝜃L for silicon are

240 and 586K, respectively.

Herring proposed several formulations depending

on the crystal type. [38] Adopting the Asen–Palmer

approach, [39] the appropriate equation for longitudinal and

transverse phonons for a specific crystallographic mate-

rial is expressed in terms of the dimensionless variable

𝑥 = ℏ𝜔/𝑘B𝑇 as follows:

𝜏−1
N =

{︃
𝜏−1
T,N = 𝐵TN(𝑘B/ℏ)𝑥𝑇 5,

𝜏−1
L,N = 𝐵LN(𝑘B/ℏ)2𝑥2𝑇 5,

(18)

where the coefficients 𝐵TN and 𝐵LN for silicon are 7.1 ×
10−13 and 2.4× 10−24 c−1K−5, respectively.

Klemens pioneered the calculation of the intensity of

phonon scattering due to isolated defects with masses

differing from those of the primary element in an ideal

crystal. [40] For such cases, the scattering intensity is rep-

resented by

𝜏−1
imp =

𝑉 𝑘4
B𝛤

4𝜋ℏ4𝑣3
𝑥4𝑇 4. (19)

For natural silicon, which consists of 92.2% 28Si, 4.7%
29Si, and 3.1% 30Si, the mass-fluctuation parameter is

𝛤 = 2.0× 10−4. [40]

Based on the aforementioned model, we have devel-

oped a comprehensive set of programs designed to pre-

dict the properties of SiNWs across a wide range of sig-

nificant parameters, including temperature, diameter, and

rms roughness.

We performed calculations to determine the thermal

conductivity of SiNWs with different diameters and levels

of rms roughness at a constant temperature of 300K. Fig-

ure 5 reveals that as the nanowire diameter increases, the

thermal conductivity of SiNWs gradually approaches that

of bulk silicon. Moreover, the data show that for a fixed

diameter of nanowire, an increase in rms roughness leads

to a reduction in thermal conductivity. These observations

are in agreement with experimental results.

To validate our model, we compared our predictions

with available experimental data. One challenge in this

regard is that many general studies on the thermal con-

ductivity of SiNWs, such as the work by Li et al., [1] do not

specify surface roughness. However, the studies by Lim et

al. [3] and Feser et al. [2] provided sufficient data on both

the diameter and surface roughness of SiNWs produced

by various methods. These data points are represented

as circles and squares in Fig. 6. We further delineate an

area between two lines to ensure that all the experimental

points fall within this region.
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Fig. 6. Relationship between surface roughness and di-

ameter of SiNWs from the experiments of Lim et al. [3] and

Feser et al. [2] The black solid and dotted lines delimit the

area containing all the experimental data. The magenta,

green, red, cyan, and blue solid lines denote roughness

ranges, which are chosen for later comparison.

For SiNWs with diameters of 2, 6.14, 37, 56, and

115 nm, we identify the minimum and maximum values

of rms roughness. These ranges are represented by ma-

genta, green, red, cyan, and blue intervals, respectively,

in Fig. 6. Utilizing these intervals, we then calculate the

thermal conductivity of the SiNWs across a temperature

range of 100–350K, as depicted in Fig. 7.
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Fig. 7. Thermal conductivity of SiNWs with various

diameters. The colored areas correspond to the ranges

of nanowire roughness 0.01𝑑 < 𝜎 < 0.06𝑑 (as shown in

Fig. 6). The squares represent the experimental data, [1]

the circle represents the results based on NEMD, [14,15]

and the dashed line represents the results based on the

NEGF method. [19]

As evident from Fig. 7, for SiNWs with a diameter of

115 nm, nearly half of the experimental data points fall

within the omitted roughness area. For SiNWs with a di-

ameter of 56 nm, all the experimental data reside in the

omitted area of min–max roughness. For SiNWs with a

37 nm diameter, most data points lie outside the specified
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interval, although the maximum error remains below 10%.

The thermal conductivity of nanowires with diameters of

less than 20 nm is only slightly affected by roughness, and

our results are in good agreement with those based on

other methods.

In summary, we have delved into various factors af-

fecting the thermal properties of SiNWs. We introduce a

robust technique to determine the phonon dispersion re-

lation for SiNWs and, for the first time, propose a DOS

for confined phonons in SiNWs with diameters of 2.7, 5.4,

and 10.8 nm. Our findings highlight the importance of the

quantum size effect for diameters below 20 nm. Using the

DOS for confined phonons, we calculate their heat capac-

ity in SiNWs. The results reveal that, at temperatures

below the Debye temperature, the heat capacity behaves

akin to a one-dimensional material, whereas at higher tem-

peratures it resembles that of bulk silicon.

To augment our investigation, we develop a suite of

computational tools to evaluate and predict the thermal

conductivity of SiNWs, considering variables such as tem-

perature, diameter and rms roughness. We compare the

classical roughness models with actual surface data from

different studies, which lead to a more optimized model

for thermal conductivity calculations. Our results high-

light the pivotal role that surface texture plays in nanowire

thermal conductivity, making it as influential as the diam-

eter of the confined structure. Hence, both the sample

geometry and surface topography must be meticulously

specified for effective thermal management in nanostruc-

tured systems.
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