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Abstract

This study introduces a novel method for calculating the thermal conductivity
of graphene using a Monte Carlo approach to evaluate anisotropic three-phonon
interactions. The phonon dispersion relation is derived using a force constant
model that incorporates up to fifth-order nearest-neighbor interactions, while
the phonon density of states (DOS) is computed via a generalized Gilat-
Raubenheimer method. A quantitative relationship for the scaling exponent
of the specific heat capacity at low temperatures is established, emphasizing
the unique two-dimensional characteristics of graphene. To address anisotropic
effects, the Monte Carlo approach efficiently identifies three-phonon combina-
tions that adhere to the conservation laws of energy and momentum. The
findings highlight the pivotal role of anisotropic phonon interactions in graphene’s
thermal conductivity. The thermal conductivity values obtained through the iter-
ative method exhibit strong agreement with previous three-phonon calculations,
thereby validating the model. Nevertheless, discrepancies with experimental data
suggest that incorporating higher-order phonon processes, such as four-phonon
scattering, may further improve predictive accuracy.

Keywords: Graphene, Density of states, Anisotropic phonon interactions, Monte
Carlo method, Thermal conductivity

1



1 Introduction

Moore’s Law predicts that with technological advancements, the number of transis-
tors doubles approximately every 18 to 24 months, leading to enhanced processor
performance [1]. However, as transistor sizes shrink below 90 nanometers, over-
heating becomes a critical issue [2]. The shift from three-dimensional systems to
low-dimensional nanosystems fundamentally alters phonon transport, directly impact-
ing heat transfer mechanisms [3–9]. Graphene, a single layer of carbon atoms arranged
in a two-dimensional hexagonal lattice, exhibits remarkable electrical [10–12] and
thermal [13–15] properties. Experimentally measured thermal conductivitie at room
temperature ranges from 1000 to 4000 W/mK [16–22], underscoring the challenges in
precisely evaluating its thermal performance.

Early calculations of intrinsic lattice thermal conductivity in semiconductors and
insulators were based on phonon gas theory using the Boltzmann transport equation
(BTE) [23, 24]. The initial thermal conductivity predictions for graphene were also
made within this framework. Despite graphene’s well-defined structure, unknown
interatomic forces and complex phonon-phonon scattering processes complicate accu-
rate predictions of its thermal conductivity. As a result, early models relied on
the single-mode relaxation time approximation (RTA) [25–27]. With advancements
in computational technology, more rigorous approaches have emerged to calculate
graphene’s thermal conductivity: (1) determining interatomic forces using empirical
potentials [28, 29] or density functional perturbation theory (DFPT) [30–33]; (2) cal-
culating phonon-phonon scattering matrix elements based on anharmonic (third-order
or higher) atomic interactions [29, 33].

Software like ShengBTE [34], Fourphonon [35] and Phono3py [36] divide the Bril-
louin zone into a dense k-space grid, requiring significant computational resources and
relying on Gaussian functions to approximate energy and momentum conservation.
Our work simplifies these calculations using a Monte Carlo algorithm that accurately
identifies phonon combinations satisfying conservation conditions without the need
for Gaussian approximation. Previous studies have computed three-phonon N and
U processes in silicon and germanium [37], but these assume isotropy. In contrast,
graphene’s dispersion relations exhibit strong anisotropy, particularly in the high-
frequency region. As a result, phonon anisotropy must be integrated into the Monte
Carlo algorithm to accurately identify phonon combinations that meet conservation
conditions.

This paper proposes a new method for calculating the thermal conductivity of
graphene, accounting for anisotropic three-phonon interactions. First, the phonon dis-
persion relation in the Brillouin zone is constructed using a force constant model
[38–40] with up to fifth-nearest neighbors, and the generalized Gilat–Raubenheimer
(GGR) [41] method is applied to integrate and numerically solve the density of states
(DOS). Next, the specific heat capacity is calculated based on the exact DOS and com-
pared with the Debye model. Finally, the Monte Carlo algorithm is used to find the
phonon combination that satisfies the three-phonon interaction conditions, and the
phonon relaxation time is determined by combining the scattering matrix calculated
by the first principles, and the thermal conductivity of graphene is calculated.
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2 Methodology

Fig.1a illustrates the unit cell of graphene, where a1 and a2 represent the lattice
vectors. The lattice constant of graphene is 2.46 Å, and each unit cell contains two
atoms. Fig.1b depicts the Brillouin zone in graphene’s reciprocal space, with b1 and
b2 as the reciprocal lattice vectors.

Fig. 1 (a) Graphene unit cell, (b) Brillouin zone representation in k-space, and (c) phonon dispersion
relation along the high-symmetry path.

The ionic configuration is characterized by the instantaneous positions of atoms
Ri(t) = R0

i + ui(t), where Ri is the position of the ion at time t, and R0
i is its

equilibrium position. The equations of motion are second-order differential equations:

M
d2ui

dt2
=

∑
i

Φ(i,j)(uj − ui), (1)

whereM is the mass of the atom, and Φ is the force constant tensor. Assuming periodic
lattice structure, the solutions take the Bloch wave form

ui(t) = A · exp
[
i(kR0

i − ωt)
]
, (2)
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where A is the mode amplitude, ω is the frequency, and k is the wave vector. Then,
substituting eq.(2) into eq.(1), we obtain the secular equation

Mω2A = D(k) ·A, (3)

where ω2(k) is the eigenvalue, A(k) is the eigenvector, D(k) is a dynamic matrix,
which is obtained by the Fourier transform of the force constants taking into account
the atoms up to 5th-nearest neighbors [40] referred to as the 5NNFC model. Addi-
tionally, the results are compared with those obtained using the 4NNFC model [39].
By solving eq. (3), we obtain six phonon polarization modes (including three acous-
tic modes and three optical modes). Fig.1c Fig. 1c illustrates the dispersion relation
along the high-symmetry path, while Fig. 2a presents the full dispersion relations of
the three acoustic modes across the Brillouin zone (BZ).

The effect of anisotropy on the dispersion relation is illustrated in Fig.2a. The sets
of closed curves represent lines of constant phonon frequency (energy). Near the center
of the Brillouin zone, these curves form closed circles. However, towards the edges of
the Brillouin zone, the curves deviate from a circular shape. This indicates that the
relationship between frequency and wave vectors depends not only on the magnitude
of the vectors but also on their direction.

Fig. 2 (a) Full phonon dispersion of graphene in the BZ. (b) General GR method: Linear epitaxy
method in the BZ.

The Brillouin zone is a regular hexagon, while the reciprocal lattice is defined by
a parallelogram spanned by the reciprocal lattice vectors b1 and b2. Despite their dif-
fering shapes, the hexagonal Brillouin zone and the parallelogram have equal areas
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and share the same frequency distribution, representing the same portion of recipro-
cal space. Consequently, the integration over the Brillouin zone can be equivalently
performed over the parallelogram defined by b1 and b2.

As shown in Fig.2b, to calculate the phonon density of states (DOS) in graphene,
the GGR method [41] uses an affine transformation to convert the parallelogram
defined by the vectors b1 and b2 into a dimensionless square. The k points are uni-
formly distributed along the two basis vectors b1 and b2. The affine transformation
then maps the k basis to the t = (t1, t2) basis: k = Bt = b1t1+b2t2, where t1, t2 ∈ [0, 1]
and B = [b1, b2].

The integral over the parallelogram is transformed into an integral over the square,
where t1, t2 ∈ [0, 1]. The DOS is then calculated based on t = (t1, t2) using the
original Gilat–Raubenheimer (GR) method [42]. The GR method divides the square
into uniform small subcells, centered at the coarse grid kc-points. Within each subcell,
the frequencies in surrounding regions are approximated using linear extrapolation,
based on the frequency and group velocity at the center point. The density of states
(DOS) is expressed as:

DOS(ω) =
∑
s

gs(ω) =
∑
kc,s

∫
dlω(t)

|vt|
, (4)

where the summation is performed over all cells kc and mode indices s, and lω(t)

represents the length of the isofrequency line for a given frequency ω. In this context,
the isofrequency line is represented by segmented lines within each cell [42]. vt is
obtained by scaling vk: vt = vk ·B = (vk · b1,vk · b2) = (vt1,vt2).

Based on the DOS obtained by the GGR method, the heat capacity [43, 44] is
calculated:

Cv(T ) = kB
∑
s

∫ ωs,max

0

ℏω
∂f0(ω, T )

∂T
gs(ω)dω, (5)

where f0 is the Bose-Einstein distribution, kB is the Boltzmann constant, and T is
the temperature.

The steady-state phonon BTE describes the balance of the phonon population
between the diffusive drift and the scattering as:

−v · ∂f
0

∂T
∇T =

∂f

∂t
|scatt, (6)

where the left-hand side represents the diffusion term, and the right-hand side cor-
responds to the scattering term. Here, v is the group velocity, and f is the phonon
distribution.

The three-phonon interaction process in crystals is generally divided into two
categories: N-process and U-process [44]. The U-process directly impacts thermal
resistance, while the N-process does not directly affect thermal resistance but influ-
ences thermal conductivity by redistributing phonon modes. Both the N-process and
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U-process satisfy the law of energy conservation:

ω1 ± ω2 = ω3, (7)

The N-process also satisfies momentum conservation, whereas the U-process
violates momentum conservation. However, this violation is compensated by the
reciprocal lattice, ensuring the generalized conservation of momentum:

k1 ± k2 = k3, (N-process) (8)

k1 ± k2 = k3 +Gi, i = 1, 2, 3, (U-process) (9)

N-processes preserve the direction of energy flow, as the resulting phonons prop-
agate in the same direction as the combined phonon mode. Consequently, these
processes do not contribute to the material’s thermal resistance. In contrast, U-
processes reverse the direction of energy flow, thereby generating thermal resistance
within the material.

Considering both three-phonon scattering and elastic scattering, the scattering
term can be expressed as:

∂f

∂t
|scatt =

∂f

∂t
|3phscatt +

∑
el

[(Ψ−Ψel)Γel] , (10)

∂f

∂t
|3phscatt =

∑
C+

[
(Ψ1 +Ψ2 −Ψ3)Γ

+
3ph

]
+

1

2

∑
C−

[
(Ψ1 −Ψ2 −Ψ3)Γ

−
3ph

]
, (11)

Γ+
3ph =

ℏω
4

f0
1 − f0

3

ω1ω2ω3
|V +

3ph|, (12)

Γ−
3ph =

ℏω
4

f0
1 + f0

2 + 1

ω1ω2ω3
|V −

3ph|. (13)

Here, V ±
3ph denotes the scattering matrix, which is calculated using the phono3py

program. The summation is performed over the set C±, representing all possible
combinations of three phonons that can interact with one another. To satisfy the quasi-
momentum conservation condition, the Brillouin zone is discretized into a uniform
grid of Nx ×Ny ×Nz points. However, for any specific grid point, most combinations
of wave vectors (k1,k2,k3) that satisfy quasi-momentum conservation fail to simul-
taneously fulfill the energy conservation condition. To simplify the calculation, many
studies approximate the delta function with a finite-width function, such as a Gaussian
approximation [45, 46].

In this paper, we will determine this set using a Monte Carlo method. Based on the
anisotropic phonon dispersion relation in graphene, we can determine the isofrequency
lines in k-space. The vector from the origin to any point on this line represents a
possible wave vector for that specific frequency. As shown in the flowchart (Fig.3), for
a phonon with frequency ω1, the frequency of the second phonon, ω2, is determined
randomly. According to the law of energy conservation, the frequency of the third
phonon is determined by the frequencies of the first two phonons. In the case of the
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synthesis process, we have ω3 = ω1 + ω2, while for the decomposition process, it is
given by ω3 = |ω1 − ω2|.

Fig. 3 Flowchart for determining three-phonon combinations based on the Monte Carlo algorithm.

First, assume that the direction of k1 is along the positive x-axis, meaning that k1

can be uniquely determined based on the frequency ω1. If the angle between k1 and the
x-axis is denoted as θ, then θ = 0. Next, an isofrequency line for ω2 is drawn with the
endpoint of the k1 vector as the center. The points on this isofrequency line correspond
to the endpoints of the vectors k+ = k1 + k2 or k− = k1 − k2. Simultaneously,
an isofrequency line for ω3 is drawn centered at the origin. For the U process, it is
necessary to draw not only the isofrequency line for ω3 in the Brillouin zone but also
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those outside the Brillouin zone: to the right (Fig.4b), upper right (Fig.4c), and lower
right (Fig.4d).

If the curve representing the endpoint of k+ or k− intersects with the isofrequency
line for ω3, the combination satisfies the conditions. If the intersection occurs within
the first Brillouin zone, it is an N process (Fig.4a). If the intersection occurs outside
the first Brillouin zone, it is a U process, and the intersection must be mapped back
to the Brillouin zone (i.e., finding an equivalent point in the Brillouin zone) through
the reciprocal lattice vectors G1, G2, and G3. These correspond to Fig.4b, 4c, and
4d, respectively.

Finally, the direction of k1 is changed, and the angle θ between k1 and the x-axis
varies within the range [0, π/6]. The above calculations are repeated to account for
not only the anisotropy of the second and third phonons but also the anisotropy of
the first phonon.

Fig. 4 Schematic diagram of N process and U process when k1 is in the direction of x-axis.
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The linearized Boltzmann Transport Equation can be expressed in its general form
as:

τ1 = τ01 + τ01∆, (14)

where the zeroth approximation τ01 is obtained based on the single-mode relaxation
time approximation (SMRTA), which assumes Ψ2 = Ψ3 = 0:

1

τ01
=

∑
C+

Γ+
3ph +

1

2

∑
C−

Γ−
3ph +

∑
eq

Γel. (15)

To solve the BTE (14) accurately, the iteration method must be employed, with the
homogeneous term ∆ given by:

∆ =
∑
C+

Γ+
3ph(ξ3τ3 − ξ2τ2) +

1

2

∑
C−

Γ−
3ph(ξ3τ3 + ξ2τ2) +

∑
eq

Γelξelτel. (16)

Here, phonons 2 and 3 are accounted for by the terms ξ2 = ω2v2

ω1v1
and ξ3 = ω3v3

ω1v1
.

Once the phonon lifetimes are determined by solving the BTE, the thermal
conductivity of graphene can be calculated as [43, 44]:

κ(T ) = kB
∑
s

∫ ωs,max

0

ℏω
∂f0(ω, T )

∂T
gs(ω)τs(ω)v

2
s(ω)dω, (17)

where the subscript 1 of the phonon lifetime is omitted, and s denotes the phonon
polarization.

3 Results and discussion

By randomly calculating different frequency and mode combinations, we can deter-
mine the number of intersections and thereby calculate the scattering probabilities for
both the N-process and U-process. (Some model combinations of calculations are given
in the supplementary material.) Due to graphene’s single-atom-layer structure, its
Hamiltonian exhibits invariance along the z-axis, a consequence of its planar symme-
try. This structural symmetry imposes specific selection rules on phonon interactions,
particularly for out-of-plane acoustic (ZA) phonons, which are responsible for flexural
vibrations. One key result of this symmetry is that three-phonon scattering processes
involving ZA phonons are restricted: only processes involving an even number of ZA
phonons are allowed. For example, allowed processes include ZA + ZA = LA, ZA +
ZA = TA, LA + ZA = ZA, and TA + ZA = ZA. Conversely, processes involving an
odd number of ZA phonons, such as ZA + LA = TA, are prohibited by this selection
rule.

This limitation has important implications for phonon transport in graphene. ZA
phonons have long wavelengths and they contribute significantly to thermal conduc-
tion. However, since the odd ZA scattering process is prohibited, the scattering rate
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of the ZA mode is low, resulting in a long relaxation time for the ZA mode. This will
lead to high thermal conductivity in graphene. Although in subsequent studies of the
four-phonon process, the ZA mode will be scattered more, reducing the relaxation
time, thereby reducing the thermal conductivity of graphene.

Fig.5 shows the frequency dependence of the scattering rates of these processes in
different phonon branches. There are significant differences between the N process and
the U process. The N process maintains the total phonon momentum and redistributes
energy primarily between phonons without increasing the total thermal resistance.
The process tends to dominate at low frequencies, when the phonon interaction energy
is low and thermal conduction is more efficient. In contrast, the U process trans-
fers phonon momentum to the lattice, violating momentum conservation and directly
increasing thermal resistance. In the SMRTA framework, the N process and the U pro-
cess are treated as independent scattering events. Using the Matthiessen rule, SMRTA
calculates the total relaxation time as τ−1 = τ−1

N + τ−1
U , which overlooks the fact that

the N process does not directly impact thermal resistance. However, in three-phonon
scattering, the N process and the U process are inherently coupled. To address this, the
phonon distribution function is refined iteratively, allowing it to dynamically adapt to
the intricate scattering processes and accurately determine the total scattering rate.

Fig. 5 The frequency dependence of the scattering rates of these processes for (a) ZA branch, (b)
TA branch, and (c) LA branch. The figure compares the scattering rates of the N process and U
process, the total scattering rate calculated using the Matthiessen rule, and the total scattering rate
obtained via the iterative method.

Fig.6a shows the phonon density of states (DOS) of graphene obtained using the
GGR method, while Fig.6b presents the specific heat capacity calculated from this
density of states. We compare these results with the widely used Debye model, which
is commonly employed to describe the specific heat capacity of solids. At high tem-
peratures, both models show good agreement. However, a clear deviation occurs at
low temperatures. The Debye model assumes a linear dispersion relation for acous-
tic phonons and a quadratic relation for the DOS, predicting a T 3 dependence [47]
of the specific heat capacity at low temperatures—a relationship well-established in
three-dimensional systems.
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Fig. 6 (a) Phonon DOS and (b) specific heat capacity of graphene: The results of the current model
are shown with a solid red line, and the Debye model with a dashed black line. The blue filled triangles
are experimental values [48].

In contrast, our results reveal a different low-temperature behavior based on
the actual phonon DOS in graphene, exhibiting a T 1.3 dependence. This deviation
can be attributed to graphene’s unique two-dimensional structure, which signifi-
cantly alters its phonon spectrum, particularly for out-of-plane acoustic (ZA) phonons
that contribute substantially to the heat capacity at low temperatures. This finding
is important, as many low-dimensional systems or nanostructures exhibit complex
phonon spectra and DOS, where the bending modes of low-dimensional systems and
the quantum confinement effects of nanostructures have a significant impact on the
temperature dependence of the specific heat capacity.

This result is consistent with previous research findings [49, 50]. Considering the
constraints of dimensionality, existing studies have shown that the specific heat capac-
ity of a one-dimensional system is linearly related to temperature at low temperatures,
C1D ∼ T , while the specific heat capacity of a two-dimensional system is quadratically
related to temperature, C2D ∼ T 2. However, these results are based on the assump-
tion of a linear dispersion relation, ω ∼ k. In the case of graphene, the out-of-plane
bending mode exhibits a quadratic dispersion relation, ω ∼ k2. This leads to a dif-
ferent density of states distribution and results in the specific heat capacity following
the relationship C ∼ T 1.3.

Fig.7a and Fig.7b show the thermal conductivity results based on the SMRTA
framework and the thermal conductivity results based on the iterative method, respec-
tively. Although we aim to perform gridless computations, we still introduce a uniform
angular division, θ = θ + δθ. This is primarily to account for the anisotropy in
graphene’s dispersion relations. For isotropic materials such as silicon or germanium,
gridless computation is feasible. Even with this adjustment, our grid remains one-
dimensional, denoted as Nθ, as illustrated in Fig.7a and Fig.7b. Typically, Nθ = 60 is
sufficient to achieve convergence. This represents a significant reduction compared to
the two-dimensional or three-dimensional grids required in earlier approaches.
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In Fig.7a and Fig.7b, Nθ = 1, which assumes that phonon 1 is isotropic. This
assumption leads to an overestimation of thermal conductivity in highly anisotropic
materials such as graphene. As Nθ increases, more anisotropic scattering is accounted
for, resulting in the gradual convergence of thermal conductivity.

Fig. 7 (a) Convergence of thermal conductivity with respect to the angular grid number calculated
using the SMRTA method, (b) Convergence of thermal conductivity with respect to the angular grid
number calculated using the iterative method, and (c) Thermal conductivity of graphene as a function
of temperature. Our results calculated using the iterative method are shown as solid red lines with
filled circles. The first-principles calculation results considering three-phonon interactions are shown
as black solid line [30] and blue dashed line [31]. The calculation results based on Tersoff potential
and considering four-phonon interaction and the calculation results based on DFT considering four-
phonon interaction are shown as black dotted lines [29] and green dot-dashed lines [35], respectively.
The three sets of experimental data are shown as blue filled triangles [19], green filled circles [20],
and orange filled squares [22], respectively.

To facilitate comparison with experimental and calculated data, we present the
temperature dependence of graphene’s thermal conductivity in Fig.7c. The significant
uncertainties associated with experimental measurements using Raman techniques [19]
(solid triangles) and [20] (solid circles) pose challenges for validating predictions from
both this work and prior studies. Additionally, we include experimental data obtained
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using an improved optical measurement method [22] (yellow squares). Our calcula-
tions demonstrate close agreement with these experimental results, with discrepancies
primarily arising from the exclusion of higher-order phonon scattering in our model.

We also compare our results with previous three-phonon calculations based on DFT
theory [30][31]. By explicitly distinguishing between N and U processes, we accurately
evaluate their individual contributions to the total scattering rate. This evaluation
is performed not only under the SMRTA approximation but also through an itera-
tive method that couples these processes. Furthermore, our Monte Carlo approach to
three-phonon interactions eliminates the need for a fixed k-space grid, allowing for
a precise assessment of possible phonon states while significantly reducing computa-
tional complexity. Notably, the results from our iterative method align closely with
those of three-phonon calculations based on DFT [31], validating the accuracy of our
model.

Finally, we incorporate results from Ruan’s group’s four-phonon scattering cal-
culations, based on both the Tersoff potential [29] and DFT [35]. These findings
highlight the critical role of higher-order scattering effects, which are consistent with
Lee’s experimental data, though they remain below the most recent experimental
observations.

4 Conclusion

In this study, we developed an advanced method to calculate the thermal conductiv-
ity of graphene by integrating anisotropic three-phonon interactions with the Monte
Carlo approach. We introduce a new quantitative determination of the specific heat
capacity scaling exponent (T 1.3) for graphene at low temperatures, capturing its dis-
tinctive two-dimensional characteristics. Our findings underscore the pivotal role of
anisotropic phonon interactions in thermal transport. By examining phonon behavior
at varying angles, we compared anisotropic and isotropic results, revealing the sig-
nificant influence of angular dependence on thermal conductivity. Furthermore, the
thermal conductivity values obtained using the iterative method demonstrate strong
agreement with previous three-phonon calculations, further validating our model.

The Monte Carlo approach enabled the precise identification of phonon triplet com-
binations that satisfy energy and momentum conservation, eliminating the reliance
on a fixed k-space grid. This flexibility facilitated a detailed analysis of three-
phonon interactions, including their contributions to scattering rates and relaxation
times. Nonetheless, slight discrepancies between our results and experimental data
suggest the necessity of incorporating higher-order phonon processes, such as four-
phonon scattering, in future studies to enhance the accuracy of thermal conductivity
predictions.
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Appendix A Nearest Neighbor Force Constant
Model

The force constant model used consists of a direct parameterization of the diagonal
real-space force constants, including the 4NNFC method up to the fourth nearest
neighbor interaction and the 5NNFC method up to the fifth nearest neighbor inter-
action. The force constant tensor describes the interaction between an atom and its
nth nearest neighbor on an arbitrarily chosen axis, e.g., has the diagonal form on the
x-axis:

Φ(n) =

ϕ
(n)
r 0 0

0 ϕ
(n)
ti 0

0 0 ϕ
(n)
to

 , (A1)

where ϕ
(n)
r , ϕ

(n)
ti , and ϕ

(n)
to represent the force-constant parameters in the radial bond-

stretching , in-plane, and out-of-plane tangential bond-bending directions of the nth-
nearest neighbors. The radial direction corresponds to the direction of the bonds and
the two tangential directions are perpendicular to it, as illustrated in Fig.A1. These
parameters are listed in Table A1.

The force-constant tensors for nearest-neighbor atoms of the same neighbor shell,
which are not located on the x axis, can be obtained by unitary rotation of the tensor
in Eq.(A1). A unitary rotation matrix around the z-axis is

Uz(θ) =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 . (A2)

where, θ is the angle between the atomic stretching and the x-axis.
For example, for first-nearest neighbors n = 1 , we obtain the force-constant tensor

between atom A0 and its first nearest-neighbor atoms B0, B1, B2:

Φ(A0, B0) = Φ(n=1) (A3)

Φ(A0, B1) = U−1
z (2π/3)Φ(n=1)Uz(2π/3) (A4)

Φ(A0, B2) = U−1
z (4π/3)Φ(n=1)Uz(4π/3) (A5)
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Fig. A1 Atom A0 and its first nearest-neighbor atoms B0, B1, B2.

Table A1 Parameters of the force constant model (4NNFC and 5NNFC) for graphene, N/m

4NNFC1 5NNFC2

Neighbor shell ϕ
(n)
r ϕ

(n)
ti ϕ

(n)
to ϕ

(n)
r ϕ

(n)
ti ϕ

(n)
to

n = 1 365.0 245.0 98.2 414.644 134.903 99.063
n = 2 88.0 -32.3 -4.0 64.680 -48.770 -7.883
n = 3 30.0 -52.5 1.5 -48.322 63.254 8.267
n = 4 -19.2 22.9 -5.8 9.036 2.067 -8.347
n = 5 - - - 16.582 2.660 1.762

1Parameters for model 4NNFC from [39].
2Parameters for model 5NNFC from [40].

Appendix B Examples of three-phonon process
combinations

As shown in Fig. B2, the modes and frequencies of two phonons are used as input.
Through the conservation of energy, the frequency of the third phonon can be deter-
mined. The mode of the third phonon is randomly assigned. Subsequently,the wave
vectors corresponding to the three phonons, as well as the proportion of the N process
and U process are determined based on the conservation of momentum.

The yellow line represents the isofrequency line for ω1. All points on this line may
correspond to the endpoint of the wave vector k1. To illustrate symmetry, we plot
the angle θ between k1 and the x-axis, ranging from −π/6 to π/6. In fact, due to
symmetry, the intervals −π/6 to 0 and 0 to π/6 contain equivalent information.

The blue line is the isofrequency line for ω2, drawn with the endpoint of k1 as its
center. Points on this line represent the possible endpoints of the vector k1 + k2. The
red line indicates the isofrequency line for ω3, centered at the origin of the Brillouin
zone. Points on this line correspond to the possible endpoints of the wave vector k3.
If the red line intersects the solid blue line, the intersection signifies a three-phonon
mode combination that may lead to the N process.

Furthermore, if a portion of the blue line extends beyond the Brillouin zone, a
reciprocal lattice vector Gi (i = 1, 2, 3) is subtracted from all points on the blue
line to obtain a new curve. The points on this new curve correspond to the vector
k1 + k2 − Gi. If this new curve intersects the red line within the Brillouin zone,
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Fig. B2 Two phonons combine to create a phonon: (a) ZA+ZA=TA, (b)TA+TA=LA,
(c)LA+TA=LA; One phonon splits into two phonons: (d)TA=ZA+ZA, (e)LA=TA+TA,
(f)LA=LA+TA.

the intersection indicates a three-phonon mode combination that may lead to the U
process. The following are some typical examples of the calculation results.

By randomly generating different combinations of frequencies and modes, we can
determine the number of intersections, which allows us to calculate the scattering
probabilities for both the N -process and U -process.
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