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In this study, lattice dynamics calculations based on the Neuroevolution Machine-learned Potential (NEP) were per-
formed for three types of silicon nanostructures: thin films, nanowires, and quantum dots. The temperature and size
dependence of the specific heat capacity was systematically examined. The results reveal a significant enhancement
in the specific heat capacity of nanostructures at low temperatures compared to bulk silicon, primarily due to phonon
confinement, discrete energy spectra, and the emergence of low-frequency surface vibrational modes. These findings
underscore the dominant role of nonlinear acoustic phonons at low temperatures, with increasing contributions from
optical modes as the temperature rises. Notably, this work reports the temperature-dependent evolution of local fitting
exponents in the specific heat scaling relation Cv ∼ T n(T ) for nanostructured systems. The high accuracy and compu-
tational efficiency of the NEP model allow for detailed characterization of the complex phonon behaviors that govern
thermal properties at the nanoscale.

I. INTRODUCTION

The temperature dependence of specific heat at low tem-
peratures plays a critical role in emerging technologies such
as quantum computing and deep space exploration1. As a
fundamental thermal property, specific heat governs energy
storage and thermal response. In quantum computing, nanos-
tructured materials may exhibit unusually high specific heat at
millikelvin temperatures2,3, leading to increased thermal exci-
tations that shorten qubit coherence times and reduce readout
accuracy. In cryogenic space applications, where tempera-
tures approach absolute zero, nanocoatings are employed to
regulate heat flow. However, elevated specific heat can com-
promise thermal buffering, potentially destabilizing control
systems4,5.

A comprehensive understanding of phonon dynamics and
specific heat in nanostructures is critical for advancing ther-
mal management strategies and optimizing the performance
of next-generation nanoelectronic and quantum devices. Over
the past two decades, nanostructures such as thin films,
nanowires, and quantum dots have been extensively developed
and have become integral components of modern electronic
and photonic systems. While both electrical and thermal
transport properties are of considerable interest6–8, the ther-
mal behavior—particularly the specific heat—of nanoscale
systems often deviates substantially from that of bulk mate-
rials due to pronounced confinement and surface effects8–11.

Experimental observations have consistently reported en-
hanced specific heat in nanostructures at low temperatures.
Novotny and Meincke12,13 observed a marked increase in the
specific heat of lead and indium nanoparticles as small as
2.2 nm in the 1.5–15 K range. Similar enhancements were re-
ported in palladium and vanadium powders with particle sizes
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below 10 nm, though the presence of structural disorder and
surface oxidation introduces additional complexity in inter-
preting the results14.

On the theoretical front, studies of specific heat in nanos-
tructures are primarily based on phonon dispersion and den-
sity of states (DOS) calculations. Wang et al.15 employed an
elastic continuum model that incorporates a weighted combi-
nation of Einstein and Debye vibrational modes to assess the
size and surface effects on the specific heat of nanoparticles.
McNamara et al.16 investigated discrete vibrational modes in
low-dimensional lattices, replacing the Debye integral with a
directional summation while still assuming linear dispersion.
Their results indicated that at low temperatures, the specific
heat of nanostructures is suppressed relative to bulk, in con-
trast to experimental observations.

Huang et al.17 addressed this inconsistency by solving elas-
tic wave equations in confined directions to obtain discrete
vibrational modes, and integrating over continuous directions
for in-plane modes. This approach led to the formulation of a
low-dimensional Debye model, where contributions from di-
latational, flexural, and shear waves were analyzed individu-
ally.

Using the dynamical matrix method with free boundary
conditions, Pascual-Gutiérrez et al.18 modeled the phonon
modes of confined silicon structures under the harmonic ap-
proximation with environment-dependent potentials. Their
findings indicated that for silicon (111) thin films, size effects
on specific heat vanish when the thickness exceeds 10 nm,
while for nanowires, the corresponding threshold is around
5 nm. These size effects were found to be most pronounced in
the low-temperature regime.

Roslee et al.19 employed density functional theory (DFT)
to investigate the heat capacity of quantum dots. By analyz-
ing modifications in the phonon density of states and consid-
ering elastic coupling of atomic vibrations, they proposed a
T 3/2 scaling model for specific heat, which was later extended
to nanofilms and nanowires20. The present authors have also
previously explored temperature fluctuations in quantum dots
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based on these results21. However, that analysis did not ac-
count for the discrete nature of phonon modes in confined sys-
tems, where allowed wavelengths are constrained such that the
system size equals an integer multiple of half the wavelength.

DFT is currently one of the most accurate computational
methods at the atomic scale. However, its high computational
cost makes it impractical for systems containing a large num-
ber of atoms. In contrast, traditional empirical potentials22 of-
fer high computational efficiency but often suffer from limited
accuracy due to their fixed functional forms and small num-
ber of fitting parameters. In recent years, machine-learned
interatomic potentials have emerged as a powerful alternative,
combining the accuracy of first-principles methods with the
efficiency of empirical models. In particular, the Neuroevo-
lution Machine-learned Potential (NEP), developed based on
neuroevolution strategies, has been widely adopted in a range
of applications—including thermal transport—due to its com-
bination of high accuracy and computational efficiency23–26.

In this study, lattice dynamics simulations are performed
for three classes of nanostructures—thin films, nanowires, and
quantum dots—using the NEP model, a pre-trained machine-
learned potential developed using training data from ab ini-
tio calculations of silicon27. The size- and temperature-
dependent behavior of specific heat is systematically analyzed
across low to intermediate temperature ranges. For quantum
dot systems, the specific heat is obtained through summation
over discrete energy levels. Notably, the temperature evolu-
tion of the local fitting exponent in the relation Cv ∼ T n(T )

is reported for the first time, providing new insights into the
complex thermal behavior of nanostructured materials, en-
abled by the high accuracy of machine-learning-based poten-
tials.

II. MODEL AND METHODOLOGY

As illustrated in Figure 1, the unit cells of three representa-
tive silicon nanostructures — (a, b) thin films with thickness
H, (c, d) nanowires with square cross-sectional width D, and
(e, f) quantum dots with side length L — are constructed for
lattice dynamics calculations. The size of the unit cell along
the periodic direction for the thin film is twice that of the
primitive unit cell of bulk silicon, whereas for the nanowire
it is identical to that of the conventional bulk unit cell. Vac-
uum layers are applied along the confined directions to elimi-
nate interactions between periodic images. The configurations
shown correspond to the initial, unrelaxed atomic structures.
Upon structural optimization (relaxation), surface atoms rear-
range to reach the lowest-energy stable configurations, con-
sistent with previous theoretical studies28,29. The structural
stability is preliminarily verified by confirming the absence of
imaginary phonon frequencies in the dispersion relations. To
further assess the accuracy of the NEP potential, Appendix A
provides a comparison between the phonon dispersion rela-
tions of a ∼1 nm thick silicon film obtained using NEP model
and those calculated from DFT.

Lattice Dynamics in Reciprocal Space is well suited for pe-
riodic systems such as bulk crystals, thin films, and nanowires,
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FIG. 1. (a) Front view and (b) side view of the unit cell for the silicon
thin film with a thickness H=1.09 nm and 2×2 surface reconstruction;
(c) front view and (d) 45-degree oblique view of the unit cell for the
silicon nanowire with a square cross-sectional width D=1.09 nm; (e)
front view and (f) 45-degree oblique view of the full structure of the
cubic silicon quantum dot with a side length L=1.09 nm.

where translational symmetry allows the use of phonon
wavevectors within the Brillouin zone. This approach signif-
icantly reduces the computational cost by diagonalizing the
dynamical matrix at a finite number of k-points. Lattice Dy-
namics in Real Space, on the other hand, is required for quan-
tum dots, which lack translational symmetry. In such finite
systems, the entire force constant matrix must be constructed
and diagonalized in real space to obtain discrete vibrational
modes.

A. Lattice Dynamics in Reciprocal Space

The analysis begins with the equation of motion under the
harmonic approximation:

mküα(l,k, t) =− ∑
l′,k′,β

Φαβ (lk, l
′k′)uβ (l

′,k′, t). (1)

Here, l denotes the lattice vector identifying the position of
a unit cell in the crystal, and k indexes atoms within the unit
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cell, where k = 1,2, . . . ,s for s atoms per unit cell. The in-
dices α and β represent Cartesian components (x, y, z), and
Φαβ (lk, l′k′) are the components of the interatomic force con-
stant matrix, describing the interaction between atom k in cell
l and atom k′ in cell l′.

Assuming a Bloch-wave solution of the form

uα(l,k, t) =
1

√
mk

ei(q·l−ωt)Aα(k,q), (2)

and utilizing translational symmetry, such that Φαβ (lk, l′k′) =
Φαβ (k,k′;R) with R= l′− l, the phonon eigenvalue problem
is obtained:

ω
2(q)Aα(k,q) = ∑

k′,β
Dαβ (k,k

′;q)Aβ (k
′,q), (3)

where the dynamical matrix is defined as

Dαβ (k,k
′;q) =

1
√

mkmk′
∑
R

Φαβ (k,k
′;R)eiq·R. (4)

In matrix notation, the eigenvalue equation becomes:

D(q) ·A(q) = ω
2(q) ·A(q). (5)

For each wave vector q in the first Brillouin zone, this
eigenvalue problem yields 3s phonon branches, where s is the
number of atoms per unit cell and the factor of 3 accounts for
the three degrees of freedom per atom.

The lattice specific heat at constant volume is given by

Cv(T ) =
1
V ∑

s
∑
q

h̄ωq,s
∂ fBE(ωq,s,T )

∂T
, (6)

where fBE(ω,T ) denotes the Bose-Einstein distribution func-
tion.

To simplify the summation, the expression can be trans-
formed into an integral over phonon frequencies by introduc-
ing the phonon density of states DOS(ω):

Cv(T ) =
∫

ωmax

0
h̄ω

∂ fBE(ω,T )
∂T

DOS(ω)dω. (7)

Here, DOS(ω) is defined as:

DOS(ω) =
1
V ∑

q,s
δ (ω −ωq,s), . (8)

where the summation is over all q-points in the Brillouin zone
and all phonon branches s, and δ is the Dirac delta function.

B. Lattice Dynamics in Real Space

Quantum dots, being finite systems without translational
symmetry, require a real-space formulation. For an N-atom
system, the equation of motion for each atom i in Cartesian
direction α is expressed as:

miüα
i (t) =−∑

j,β
Φαβ (i, j)uβ

j (t), (9)

where Φαβ (i, j) are the elements of the force constant matrix
describing interactions between components α and β of atoms
i and j, respectively. The full matrix H, assembled from all
such elements, is symmetric and of size 3N ×3N.

Assuming a harmonic time dependence uα
i (t) = Aα

i eiωt and
substituting into Eq. (8), the following eigenvalue equation is
obtained:

miω
2Aα

i =−∑
j,β

Φαβ (i, j)Aβ

j . (10)

This can be written in matrix form as:

M−1H ·An = ω
2
n ·An, (11)

where M is a diagonal mass matrix with entries Mii = mi, and
An is the polarization vector corresponding to the n-th normal
mode with frequency ωn.

Solving this generalized eigenvalue problem yields 3N dis-
crete vibrational modes, which constitute the vibrational spec-
trum of the finite system. Since periodicity is not introduced in
this approach, the wave vector q is absent, and the expression
for the specific heat capacity in Eq. (6) becomes a summation
over the discrete set of eigenfrequencies:

Cv(T ) =
1
V

3N

∑
n=1

h̄ωn
∂ fBE(ωn,T )

∂T
. (12)

This formulation is particularly suitable for systems without
translational symmetry, such as nanoclusters, molecules, and
quantum dots.

C. Computational Details

The total energies and atomic forces of the optimized sil-
icon nanostructures were calculated using the NEP model30.
The harmonic force constants were subsequently extracted via
the finite displacement method implemented in the PHONOPY
package31.

For bulk silicon, thin films, and nanowires, the real-space
force constants were transformed into reciprocal space to con-
struct the dynamical matrix, and the phonon frequencies were
obtained by solving the corresponding eigenvalue problem. In
contrast, for quantum dots, which lack translational symme-
try, the eigenvalues of the full real-space force constant matrix
were computed directly.

For a quantum dot containing 64 atoms (L=1.09 nm), the
calculation takes approximately 2 seconds; For 512 atoms
(L=2.17 nm), it takes about 56 seconds; For 1728 atoms
(L=3.26 nm), the calculation requires approximately 105 min-
utes.

After determining the phonon frequencies, the phonon den-
sity of states and the temperature-dependent specific heat ca-
pacity were calculated through statistical sampling of the vi-
brational spectrum.
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III. RESULTS AND DISCUSSION

Figure 2 presents the temperature-dependent specific heat
capacity of silicon nanostructures with varying geometries, in-
cluding thin films of different thicknesses H, nanowires with
square cross-sectional widths D, and quantum dots of side
lengths L. Across all nanostructures, a consistent enhance-
ment in specific heat capacity is observed at low tempera-
tures compared to bulk silicon. Furthermore, this enhance-
ment becomes increasingly pronounced as the structural size
decreases. This behavior is attributed to the dominant con-
tribution of long-wavelength, low-frequency phonons in con-
fined systems (see Figure 3), which play a significant role in
thermal properties at low temperatures.

The Debye model assumes a linear phonon dispersion,
leading to a quadratic phonon DOS. As a result, the specific
heat exhibits a cubic temperature dependence at low temper-
atures, as shown by the black dashed line in Figure 2. The
red markers represent the experimental data of bulk silicon’s
specific heat, which show excellent agreement with the NEP
model calculations presented in this work.

The underlying mechanisms can be further elucidated by
analyzing the phonon DOS, as shown in Figure 3. For thin
films with a thickness of approximately 1 nm (Figure 3a) and
nanowires with lateral dimensions around 1 nm (Figure 3b),
multiple peaks emerge due to internal standing waves and sur-
face phonon modes. In the case of quantum dots (Figure 3c),
the vibrational spectrum becomes fully discrete as a result of
strong confinement, with the density of discrete frequencies
qualitatively representing the DOS, even though individual
frequency values lack direct physical significance.

The observed enhancement in low-temperature specific
heat can also be understood from a dimensionality perspec-
tive. As illustrated in Figures 2a–c, structures of lower di-
mensionality exhibit higher specific heat at low temperatures.
This trend is consistent with the predictions of the extended
Debye model for low-dimensional systems17, which suggests
scaling laws of Cv ∝ T 2 for two-dimensional structures and
Cv ∝ T for one-dimensional systems in the low-temperature
limit.

However, both the classical Debye model and its extended
forms assume purely linear acoustic dispersion and neglect
optical branches, which limits their accuracy. In contrast, the
present study fully incorporates the actual nonlinear acous-
tic branches—particularly important at low temperatures—as
well as optical branches, which contribute significantly at in-
termediate and high temperatures. This comprehensive treat-
ment allows for a more accurate description of the specific
heat behavior across a wide temperature range.

In addition to the confinement effects observed in nanos-
tructures, bulk silicon also exhibits deviations from the De-
bye model, as shown in Figure 2. At low temperatures,
these deviations arise from the inclusion of nonlinear acous-
tic branches in our calculations, while the Debye model as-
sumes linear dispersion. At intermediate temperatures, optical
branches—neglected by the Debye approximation—become
increasingly important. As the temperature approaches zero,
the contribution of only long-wavelength acoustic phonons

near the Γ point remains, which exhibit nearly linear disper-
sion; consequently, the Debye model becomes valid in this
regime.

To further quantify the low-temperature behavior, we ex-
tract the temperature-dependent fitting exponent n from the
relation Cv ∼ T n(T ), as shown in Figures 2d–f. The exponent
was determined through local fits over five-point temperature
intervals. Validation tests confirmed that using fitting win-
dows ranging from 3 to 20 temperature points yields nearly
identical results, indicating that the choice of window size
has negligible influence on the extracted values. Notably, for
nanostructures, n does not stabilize even at very low temper-
atures. This is due to the persistence of nonlinear dispersion
near the Γ point arising from flexural modes.

In low-dimensional systems such as thin films and
nanowires, flexural phonon modes exhibit nonlinear disper-
sion near the Γ point. This deviation from linear behavior
leads to a density of states (DOS) that no longer follows a sim-
ple power-law form. Consequently, the integral expression for
the specific heat does not yield a constant temperature expo-
nent. As the temperature increases, phonons across a wider
range of frequencies are thermally excited, effectively allow-
ing the system to “sample” different regions of the dispersion
relation. This results in a temperature-dependent heat capac-
ity of the form Cv(T )∼ T n(T ), where the exponent n(T ) is no
longer constant but evolves with temperature.

To the best of our knowledge, the temperature dependence
of the exponent n is systematically presented here for the first
time. In all cases, n increases with temperature, reaches a peak
around 20 K, and subsequently decreases. For example, for a
film with a thickness of approximately 1 nm, n increases from
1.5 at low temperatures to about 3 at 20 K before decreas-
ing. For films thicker than 2 nm, n exceeds 3 at 20 K. For a
nanowire with a lateral size of 1 nm, n rises from 1 to approx-
imately 2 at 20 K. In the case of a 1 nm quantum dot, n in-
creases from 0.5 to around 1.5. For comparison, the curve for
bulk silicon is also provided, demonstrating that as the struc-
tural size increases, the behavior of nanostructures gradually
converges toward that of the bulk.

The non-monotonic behavior of the exponent n(T ) results
from the sequential thermal activation of different phonon
modes. At low temperatures, specific heat is primarily gov-
erned by low-frequency flexural modes with nonlinear dis-
persion, leading to a small value of n(T ). As the tempera-
ture increases, phonon modes with steeper dispersion become
thermally active, causing n(T ) to rise. At even higher temper-
atures, high-frequency optical modes with flatter dispersion
start to contribute. Since these modes exhibit weaker temper-
ature dependence, they reduce the rate of growth of the spe-
cific heat, resulting in a gradual decrease in n(T ) at elevated
temperatures.

Since thermal conductivity is proportional to the product of
specific heat, phonon group velocity, and phonon mean free
path, the temperature dependence of specific heat can signif-
icantly affect thermal transport—particularly at low temper-
atures, where deviations from bulk behavior are more pro-
nounced in low-dimensional systems. However, in nanostruc-
tures, quantum confinement and size effects significantly re-
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FIG. 2. (a–c) Temperature dependence of the specific heat capacity for silicon nanostructures of various sizes, along with bulk results obtained
using the NEP model, Debye model, and experimental data, and (d–f) the corresponding temperature-dependent fitting exponent n in the
relation Cv ∼ T n. Specifically, (a, d) show results for thin films with different thickness H; (b, e) for nanowires with different square cross-
sectional widths D; and (c, f) for quantum dots with different side lengths L.

FIG. 3. Phonon density of states (DOS) for different nanostructures: (a) thin film with a thickness of 1.09 nm, (b) nanowire with a square
cross-section of width 1.09 nm, and (c) quantum dot with a side length of 1.09 nm, compared with bulk silicon.

duce both phonon group velocity and mean free path32. As a
result, the enhancement in specific heat may not necessarily
lead to an increase in thermal conductivity.

To ensure numerical accuracy, convergence tests were per-
formed for both the Brillouin zone mesh density and the fre-
quency bin width used in the DOS calculations. Figures 4a
and 4c show that a 120×120×120 grid yields fully converged
results, even at very low temperatures. Similarly, Figures 4b
and 4d demonstrate that a frequency bin width of 0.05 THz is
sufficiently fine to ensure reliable accuracy in the specific heat
calculations.

For bulk silicon, the fitting exponent n also reaches a max-
imum near 20 K, indicating the most rapid variation in spe-
cific heat with temperature. Below 40 K, n exceeds the Debye
value of 3, reflecting a steeper increase. As the temperature
further decreases, n gradually approaches 3. Above 40 K, n
falls below 3, indicating a saturation trend. At high temper-
atures, the specific heat approaches a constant value, corre-
sponding to n ≈ 0.
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FIG. 4. Convergence tests for heat capacity calculations of bulk sili-
con.

IV. CONCLUSION

In this work, the temperature- and size-dependent specific
heat capacity of silicon nanostructures at low and interme-
diate temperatures was systematically investigated using the
NEP framework. The results clearly demonstrate that, due to
phonon confinement, discrete energy levels, and the presence
of low-frequency surface phonon modes, all nanostructures
exhibit an enhanced specific heat capacity at low temperatures
compared to bulk silicon, with this enhancement becoming
more pronounced as the structural size decreases.

The analysis reveals that nonlinear acoustic branches dom-
inate the thermal behavior at low temperatures, while optical
phonon branches contribute significantly at intermediate and
higher temperatures. Notably, this study presents, for the first
time, the temperature-dependent evolution of the local fitting
exponent n in the relation Cv ∼ T n for various nanostructures.
The application of a machine-learning-based interatomic po-
tential enables accurate and detailed characterization of the
phonon spectrum, capturing the intricate and nontrivial tem-
perature dependence of specific heat capacity. Although sili-
con was used as the model system in this work, the methodol-
ogy and the key findings regarding the temperature-dependent
specific heat capacity and the evolution of n(T ) are general
and can be extended to other nanostructured materials with
similar phonon confinement effects.

These findings provide important insights into the thermal
properties of low-dimensional systems and underline the rele-
vance of n(T ) to quantum thermal management and nanoscale
heat capacity engineering, where controlling the temperature
dependence of specific heat can enable optimized thermal en-
ergy storage, transfer, and dissipation at the nanoscale. They
offer valuable guidance for the design and optimization of
nanoscale devices with tailored thermal management charac-
teristics.
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Appendix A: Validation of NEP

To evaluate the accuracy and reliability of the NEP model
in predicting phonon-related thermal properties, we compare
the phonon dispersion, DOS, and specific heat obtained using
NEP with those from first-principles DFT calculations. As
shown in Figure 5, both methods produce generally consistent
results for a silicon thin film with a thickness of 1.09 nm, con-
firming that NEP is capable of efficiently and accurately sim-
ulating the lattice dynamics of low-dimensional silicon nanos-
tructures.

(c)

(a) (b)

(d)

Film H = 1.09 nm

FIG. 5. Comparison of phonon dispersion relations and density of
states for a silicon thin film approximately 1 nm thick, obtained using
the NEP and DFT.
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Although there are some noticeable deviations in the
phonon dispersion curves—particularly for acoustic phonons
near the Γ point—we emphasize that this discrepancy has lim-
ited impact on the thermal properties of interest. Figures 5c
and 5d show that the specific heat of bulk silicon computed
using NEP closely matches the DFT result. For the 1.09 nm
film, the specific heat values from NEP and DFT are also in
good agreement, with only minor differences. Moreover, the
temperature dependence of the effective exponent n(T ), ob-
tained from the power-law relation Cv ∼ T n(T ), exhibits sim-
ilar trends for both methods. These findings support the con-
clusion that the NEP model remains reliable for capturing the
key thermal behaviors discussed in this work.

Appendix B: Detailed Dispersion Analysis

The phonon dispersion relation of the 2.17-nm-thick film
and a close-up near the Γ point are shown in Figure 6. In
the zoomed-in view, three acoustic branches can be identified:
two with linear dispersion and one with quadratic dispersion.
These correspond to shear horizontal (SH), longitudinal (L),
and flexural (F) modes, respectively. The flexural mode typi-
cally emerges in thin films with small thicknesses.

FIG. 6. The phonon dispersion relation of the 2.17-nm-thick film and
a close-up near the Γ point.

Appendix C: Analysis at different temperatures

Figure 7 shows the normalized cumulative specific heat ca-
pacity for silicon thin films and bulk (NEP model and De-
bye model) at various temperatures. At low temperatures, the
specific heat capacity is dominated by low-frequency, long-
wavelength phonons, which are predominantly acoustic. As
the temperature increases, higher-frequency phonons increas-
ingly contribute to the heat capacity. Notably, at T = 10 K,
the bulk heat capacity from the NEP model closely matches
that from the Debye model, whereas at T = 20 K, a significant
deviation appears, indicating that optical modes start to play a
non-negligible role from around 20 K.

FIG. 7. Normalized cumulative specific heat capacity of thin films
and bulk (NEP model and Debye model) at different temperatures
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