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Abstract

In this study, the temperature fluctuations in three-dimensional confined
nanostructures (quantum dots) of germanium, silicon, and diamond were
calculated using the T 3/2 model based on the particle-in-a-box (PIAB) ap-
proach and compared with the Debye T 3 model. The analysis focused on
quantum dots with sizes ranging from 1 to 100 nm. According to the PIAB
T 3/2 model, temperature fluctuations decrease as the temperature decreases,
consistent with the principles of statistical physics. In contrast, the Debye
T 3 model predicts an increase in temperature fluctuations with decreasing
temperature, contradicting the principles of statistical physics. These re-
sults emphasize the significant impact of quantum confinement and high-
light the limitations of the Debye T 3 model in describing nanoscale systems.
Furthermore, distribution diagrams illustrating temperature fluctuations as
functions of size and temperature were established for the first time. Based
on these diagrams, clear boundaries were defined for the temperature and
thermophysical property ranges where reliable predictions can be made.
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1. Introduction

Temperature and other thermophysical concepts are traditionally defined
for systems with large numbers of particles [1]. However, at the nanoscale,
where the number of particles is greatly reduced, conventional temperature
definitions may not hold due to significant fluctuations in thermodynamic
properties [2] [3]. These fluctuations pose challenges for reliable data acqui-
sition, complicating accurate temperature determination [4–7].

As the size of nanostructures decreases, temperature fluctuations become
more pronounced, significantly influencing their behavior [8]. This phe-
nomenon necessitates the development of precise measurement techniques to
accurately capture thermal behavior at the nanoscale. Recent research has
focused on advancing temperature measurement methods to enhance data
reliability [9–11]. According to statistical mechanics, temperature fluctua-
tions are inversely related to heat capacity [4]. In other words, systems with
higher heat capacity exhibit smaller temperature fluctuations. Consequently,
at low temperatures or in small systems, temperature fluctuations become
more significant.

The influence of quantum confinement on the heat capacity of quantum
dots (QDs) has garnered significant attention. For instance, Novotny et al.
experimentally investigated the unique heat capacity behavior of fine lead
particles [12]. Theoretically, McNamara et al. developed a heat capacity
model by replacing the integral in the Debye model with a summation over
the wave vector components [13]. Additionally, Roslee et al. combined den-
sity functional theory (DFT) calculations with modifications to the Debye
model, incorporating the particle-in-a-box (PIAB) framework to propose a
new T 3/2 model [14].

The Debye T 3 model [15, 16] predicts that temperature fluctuations in
nanoscale structures diverge at low temperatures, contradicting statistical
physics, which asserts that temperature fluctuations should not exceed the
temperature itself. In contrast, the PIAB T 3/2 model, validated by density
functional theory (DFT) [14], provides results more consistent with statistical
physics.

In this paper, we perform theoretical calculations to compare temperature
fluctuations in QDs, examining the effects of temperature and size. Specif-
ically, we investigate the limitations of the Debye T 3 model for nanoscale
systems, which predicts diverging temperature fluctuations at low temper-
atures—an outcome inconsistent with statistical physics. In contrast, the
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PIAB T 3/2 model aligns with statistical expectations and highlights the in-
fluence of quantum confinement on thermal properties. We mapped temper-
ature fluctuations as functions of size and temperature and, based on various
criteria, identified the ranges within which temperature and thermophysical
properties are reliably defined. This study provides new insights into the
thermodynamic behavior of QDs, with significant implications for advancing
research in nanotechnology and nanoenergy.

2. Methodology

The Debye T 3 model [15, 16] for heat capacity assumes that phonon
propagation in bulk solids is continuous, isotropic, and unconfined. This
assumption leads to a linear dispersion relation for phonons in bulk solids:

ω(k) = vsk (1)

where ω is the angular frequency, k is the wave vector, and vs is the speed of
sound. Under this model, the number of phonon modes n(ω) and the phonon
density of states D(ω) are expressed as:

n(ω) =
V ω3

6π2v3s
(2)

D(ω) =
d

dω
n(ω) =

V ω2

2π2v3s
(3)

where V is the volume of the bulk material. The molar heat capacity at
constant volume for bulk solids, derived from the Debye model, is given by:

Cmolar
V = 9R

(
T

TD

)3 ∫ TD/T

0

x4ex

(ex − 1)2
dx (4)

This is known as the Debye T 3 model, where R is the gas constant, TD is the
Debye temperature, and x is an integration variable related to the system’s
energy and temperature x = ℏω/kBT , ℏ is the reduced Planck constant, kB
is the Boltzmann constant. The mass-specific heat capacity can be expressed
as:

Cm
V =

Cmolar
V

M
= 9

R

M

(
T

TD

)3 ∫ TD/T

0

x4ex

(ex − 1)2
dx (5)

where M is the molar mass.
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The characteristic Debye temperature TD is related to the Debye fre-
quency ωD by:

TD =
ℏωD

kB
=

ℏvs
kB

(
18π2N

V

)1/3

(6)

where N is the number of atoms.
Roslee et al. [14, 17] demonstrated that phonons in QDs do not propagate

continuously due to quantum confinement effects, as illustrated in Fig. 1.
These effects restrict phonon propagation to the dimensions of individual
QDs, resulting in a modified dispersion relation based on the PIAB frame-
work:

ω(k) =
ℏk2

2m
(7)

where m is the mass of an individual QD, and the wave numbers are discrete:
k = nπ/L, n = 1, 2, 3, . . ..

Figure 1: (a) Structure of the quantum dot. (b) Particle-in-a-box model.

The number of phonon modes n(ω) and the phonon density of statesD(ω)
for QDs are given by:

n(ω) =
V

6π2

(
2mω

ℏ

)3/2

(8)

D(ω) =
d

dω
n(ω) =

V

π2

(
m3ω

2ℏ3

)1/2

(9)

where V now represents the quantum confinement volume of the QD.
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The heat capacity for QDs, known as the PIAB T 3/2 model, is derived
as:

CV =
3(3N − 6)

2
kB

(
T

TD

)3/2 ∫ TD/T

0

x5/2ex

(ex − 1)2
dx (10)

The mass-specific heat capacity is:

Cm
V =

3(3N − 6)

2ρV
kB

(
T

TD

)3/2 ∫ TD/T

0

x5/2ex

(ex − 1)2
dx (11)

where ρ is the material density.
The characteristic temperature TD for the PIAB T 3/2 model can be related

to the Debye frequency ωD by:

TD =
ℏωD

kB
=

ℏ2

2mkB

(
6π2(3N − 6)

V

)2/3

(12)

Temperature is a statistical average typically applied to macroscopic sys-
tems containing a large number of particles. In such systems, the vast num-
ber of particles allows for an accurate statistical determination of tempera-
ture, and temperature fluctuations are negligible. However, at the nanoscale,
where the number of particles is significantly reduced (to tens or hundreds),
temperature fluctuations become more pronounced. This reduction poses
challenges in obtaining sufficient statistical samples to mitigate these fluc-
tuations. Under such conditions, the system may not achieve thermal equi-
librium as assumed in traditional thermodynamics, complicating the precise
determination of temperature.

Additionally, the reduced heat capacity at the nanoscale makes systems
more sensitive to energy input changes, causing significant temperature fluc-
tuations even with minimal energy variations. In small volumes, low heat
capacity leads to increased temperature fluctuations, potentially obscuring
the true thermodynamic behavior of the system. This limitation underscores
the constraints of classical thermodynamics in small-scale systems. Temper-
ature fluctuations can be described by the following relation [4]:

⟨(∆T )2⟩ = kBT
2

CV

=
kBT

2

ρCm
V V

(13)

Here, the focus is on fluctuations as a function of volume. For temperature
fluctuations to be negligible, the system’s heat capacity must be sufficiently
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large. However, at the nanoscale, the limited number of particles often results
in a small heat capacity, leading to significant temperature fluctuations and
questioning the applicability of traditional thermodynamic concepts.

For the quantitative analysis of temperature fluctuations, the normalized
temperature fluctuation ηT is defined as:

ηT =

√
⟨(∆T )2⟩
T

(14)

where
√

⟨(∆T )2⟩ denotes the root-mean-square temperature fluctuation, and
T represents the system’s average temperature. The parameter ηT measures
the relative magnitude of temperature fluctuations compared to the system’s
average temperature. When ηT ≪ 1, temperature fluctuations are negligible
relative to the average temperature, making it appropriate to describe the
system using macroscopic thermodynamic variables such as temperature. In
contrast, if ηT ∼ 1 or larger, the fluctuations become comparable to or exceed
the average temperature, challenging the validity of temperature as a well-
defined and measurable quantity.

3. Results and discussion

The Debye T 3 model suggests that at low temperatures, the heat capacity
of a system is proportional to T 3. As the temperature approaches absolute
zero, the heat capacity decreases sharply. According to thermal fluctuation
theory, the amplitude of temperature fluctuations is inversely related to heat
capacity. Thus, if the heat capacity decreases more rapidly than T 2, as pre-
dicted by the Debye model, temperature fluctuations will diverge. However,
this divergence does not accurately represent the behavior of physical sys-
tems, as quantum effects become significant at extremely low temperatures.

In contrast, the PIAB T 3/2 model predicts that at low temperatures,
the heat capacity is proportional to T 3/2. This implies that the decrease
in heat capacity is slower than T 2, ensuring that temperature fluctuations
do not diverge but instead converge. This behavior is strongly influenced
by quantum effects, which dominate at very low temperatures and lead to
deviations from classical predictions.

In this study, we calculated the heat capacity and temperature fluctua-
tions for germanium, silicon, and diamond QDs using the Debye T 3 model
and the PIAB T 3/2 model, as shown in Fig. 2.
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Figure 2: Heat capacity and temperature fluctuations as a function of temperature
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For germanium, silicon, and diamond, the specific heat capacities calcu-
lated using the two models agree well at high temperatures, aligning with
the Dulong-Petit law, which assumes full phonon excitation. At low tem-
peratures, a notable difference arises: the heat capacity in the Debye model
exhibits a T 3 dependence, while in the PIAB model, it follows a T 3/2 depen-
dence. As shown in Fig. 2a, 2c, and 2e, the results of the PIAB T 3/2 model
are slightly higher than those of the Debye T 3 model.

As predicted, the temperature fluctuations based on the Debye T 3 model
tend to diverge at low temperatures. In contrast, the PIAB T 3/2 model
provides convergent results, where temperature fluctuations decrease with
decreasing temperature, as shown in Fig. 2b, 2d, and 2f. However, tempera-
ture fluctuations increase with decreasing size, highlighting the challenges in
accurately defining temperature at the nanoscale and the associated limita-
tions in defining other thermophysical properties.

How small must the temperature fluctuation be for temperature and ther-
modynamics to be considered meaningful? Typically, ηT ≤ 0.1 or even
ηT ≤ 0.01 is used as the criterion. The errors and applicability of these
two standards differ. These thresholds are illustrated in Fig. 2b, 2d, and
2f: if ηT exceeds the ηT = 0.1 line, the definition of temperature is deemed
invalid; if ηT lies between the ηT = 0.1 and ηT = 0.01 lines, the definition
of temperature is considered acceptable, albeit with significant errors; and
if ηT is below the ηT = 0.01 line, the temperature definition is valid, and
thermodynamic theory can be reliably applied.

The baseline and the temperature fluctuation curve intersect at a specific
point, corresponding to a temperature. This implies that if the baseline
is used as the judgment criterion, the temperature cannot be defined for
values below this temperature, while the definition of temperature is valid
for values above it. This temperature is referred to as the minimum allowed
temperature. Based on different criteria (ηT < 0.1 and ηT < 0.01), we
determined the minimum allowed temperatures for various sizes and listed
them in Table 1.

When ηT ≤ 0.1 is used as the criterion, the minimum allowed temperature
for the three QDs at a length of 1 nm is less than 300 K. This indicates that, at
room temperature, the temperature fluctuation of QDs with a length greater
than 1 nm is less than 10% of the temperature itself. If this level of error is
deemed acceptable, the definition of temperature can be considered valid.

When ηT ≤ 0.01 is used as a stricter criterion, the minimum allowed
temperature for the three QDs is less than 300 K when their length exceeds
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Length 1nm 3nm 5nm 10nm 30nm 100nm

Minimum Allowed Temperature (K), η ≤ 0.1

Ge 126.8 9.8 3.6 0.7 0 0

Si 176.1 15.4 5.6 1.5 0 0

Diamond 186.1 20.7 7.5 1.9 0 0

Minimum Allowed Temperature (K), η ≤ 0.01

Ge 32347.7 15165.1 90.0 18.9 2.1 0

Si 55098.7 23695.0 134.2 29.9 3.4 0

Diamond 150653.7 589.8 160.2 40.0 4.5 0

Table 1: Minimum allowed temperatures for different QD lengths under conditions ηT ≤
0.1 and ηT ≤ 0.01.

5 nm. This indicates that, at room temperature, the temperature fluctuation
of QDs with a length greater than 5 nm is less than 1% of the temperature
itself, meaning the temperature definition is highly accurate. Additionally,
when the length reaches 100 nm, the minimum allowed temperature is 0,
implying that temperature can be accurately defined at all values, and the
fundamental assumptions of thermodynamics are valid at this scale.

For a more comprehensive analysis, the normalized temperature fluctua-
tions as a function of size and temperature are plotted, as shown in Fig. 3.
It is immediately apparent that the yellow region in the lower left corner of
each image corresponds to ηT > 1, indicating that the temperature fluctua-
tion exceeds the temperature itself. This implies that, at low temperatures
and small sizes, the fundamental framework of thermodynamics breaks down
entirely.

The dark blue region in the upper right corner of each image corresponds
to ηT ≤ 0.1, indicating that the temperature fluctuation is significantly
smaller than the temperature itself. This implies that, at high tempera-
tures and large sizes, the fundamental framework of thermodynamics is fully
established. The equal normalized fluctuation lines ηT = 0.1 and ηT = 0.01
are also shown in the figure as reference lines. According to these standards,
regions above and to the right of these lines are considered to have an accu-
rate temperature definition, while regions below and to the left are considered
to have an inaccurate temperature definition.
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Figure 3: The normalized temperature fluctuations as a function of Length of QD and
temperature

4. Conclusion

In this study, we conducted a pioneering analysis of temperature fluc-
tuations in germanium, silicon, and diamond QDs, examining how these
fluctuations depend on both temperature and size. For the first time, we es-
tablished the minimum allowed value for the definition of temperature in QDs
as a function of size and material, shedding light on the boundaries within
which thermodynamic principles can be reliably applied at the nanoscale.

Our findings revealed that for QDs smaller than 5 nm, temperature fluc-
tuations become so significant that they undermine the validity of the tem-
perature concept, challenging conventional thermodynamic models. This
indicates that at these small scales, quantum effects dominate and must
be accounted for to accurately describe the system’s thermal behavior. In
contrast, for QDs with lengths greater than 100 nm, the minimum allowed
temperature decreases to levels where temperature fluctuations are minimal,
confirming that classical thermodynamic definitions remain applicable.
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Appendix A. Phonon Density of States

The phonon density of statesD(k) (orD(ω)) for a three-dimensional solid
can be determined by calculating the volume of a single state in k-space,
Vstate:

Vstate = ∆kx∆ky∆kz =

(
2π

Lx

)(
2π

Ly

)(
2π

Lz

)
=

8π3

LxLyLz

=
8π3

V
, (A.1)

where V = LxLyLz is the volume of the solid. The total volume of k-space
for all states is enclosed in a sphere with volume Vtotal:

Vtotal =
4

3
πk3. (A.2)

The number of states n(k) with wave vectors smaller than k is given by:

n(k) =
Vtotal

Vstate

=
4
3
πk3

8π3

V

=
V k3

6π2
. (A.3)

The phonon density of states D(k) is defined as the number of modes n(k)
per unit wave vector:

D(k) =
d

dk
n(k) =

V k2

2π2
. (A.4)
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Appendix A.1. Debye T 3 Model

With a linear dispersion relation, n(ω) can be expressed as:

n(ω) =
V

6π2

(
ω

vs

)3

. (A.5)

The phonon density of states D(ω) becomes:

D(ω) =
d

dω
n(ω) =

V ω2

2π2v3s
. (A.6)

Appendix A.2. PIAB T 3/2 Model

For a quadratic dispersion relation, n(ω) is given by:

n(ω) =
V

6π2

(
2mω

ℏ

)3/2

. (A.7)

The corresponding phonon density of states is:

D(ω) =
d

dω
n(ω) =

V

π2

(
m3ω

2ℏ3

)1/2

. (A.8)

Appendix B. Heat Capacity

The thermal energy U can be expressed as:

U =

∫ ωD

0

(
1

2
+

1

e
ℏω

kBT − 1

)
ℏωD(ω) dω. (B.1)

The heat capacity at constant volume Cv is:

Cv =
dU

dT
=

∫ ωD

0

d

dT

(
1

e
ℏω

kBT − 1

)
ℏωD(ω) dω. (B.2)
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Appendix B.1. Debye T 3 Model

The Debye wave vector kD satisfies:

n(kD) =
V k3

D

6π2
= 3N. (B.3)

The Debye frequency ωD can be written as:

ωD = vs · kD = vs

(
6π2 · 3N

V

)1/3

. (B.4)

Substituting D(ω) into U gives:

U =

∫ ωD

0

(
1

2
+

1

e
ℏω

kBT − 1

)
ℏω

V ω2

2π2v3s
dω. (B.5)

Introducing x = ℏω
kBT

and TD = ℏωD

kB
, we have:

U = 9NkBT

(
T

TD

)3 ∫ TD/T

0

(
1

2
+

1

ex − 1

)
x3 dx. (B.6)

The heat capacity becomes:

CV =
dU

dT
= 9NkB

(
T

TD

)3 ∫ TD/T

0

x4ex

(ex − 1)2
dx, (B.7)

where N is the number of atoms.
The molar heat capacity is:

CV,molar = 9R

(
T

TD

)3 ∫ TD/T

0

x4ex

(ex − 1)2
dx, (B.8)

with R = kBNA, where NA is Avogadro’s number.

Appendix B.2. PIAB T 3/2 Model

In QDs, the vibrational degrees of freedom are represented by 3N − 6,
where the subtraction accounts for the removal of three translational and
three rotational degrees of freedom. The relationship between the vibrational
degrees of freedom and the maximum wave vector kD is given by:

n(kD) =
V k3

D

6π2
= F = 3N − 6. (B.9)
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The maximum frequency ωD can be expressed as:

ωD =
ℏ
2m

kD =
ℏ
2m

(
6π2 · F

V

)1/3

. (B.10)

The thermal energy becomes:

U =

∫ ωD

0

(
1

2
+

1

e
ℏω

kBT − 1

)
ℏω

V

π2

(
m3ω

2ℏ3

)1/2

dω. (B.11)

With x = ℏω
kBT

and TD = ℏωD

kB
:

TD =
ℏ2

2mkB

(
6π2 · F

V

)2/3

, (B.12)

T
3/2
D =

(
ℏ2

2mkB

)3/2
6π2 · F

V
. (B.13)

The thermal energy expression becomes:

U =
3(3N − 6)

2
kBT

(
T

TD

)3/2 ∫ TD/T

0

(
1

2
+

1

ex − 1

)
x3/2 dx. (B.14)

The heat capacity is:

Cv =
3(3N − 6)

2
kB

(
T

TD

)3/2 ∫ TD/T

0

x5/2ex

(ex − 1)2
dx, (B.15)

where N is the number of atoms.
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