Callaway Two-Relaxation-Time Model

It is well known that normal processes (i.e., scattering processes that conserve the total crystal momentum) cannot by themselves produce a finite thermal conductivity. Therefore, one cannot simply add the inverse relaxation time of normal processes (N processes) to those of momentum-destroying processes. Examples of the latter include Umklapp processes, impurity scattering, and boundary scattering. Throughout this article, all such momentum-nonconserving processes will be collectively referred to as R processes.

1. Phonons, distributions, and scattering classification

For a phonon mode $\lambda \equiv (\mathbf{q}, j)$, we have

The equilibrium Bose–Einstein distribution is

\[n_{\lambda}^{(0)}(T) = \frac{1}{\exp(\hbar\omega_\lambda/k_B T) - 1}.\]

In the presence of a temperature gradient $\nabla T$, the occupation becomes

\[n_\lambda = n_{\lambda}^{(0)} + n_{1,\lambda}, \qquad |n_{1,\lambda}|\ll n_{\lambda}^{(0)}.\]

Scattering is classified into two categories — the core of the Callaway model:

Key point: N processes do not generate thermal resistance.
They merely establish a “drifting” equilibrium state of the phonon gas, while the actual dissipation of heat flux is governed by R processes.

2. BTE and the Callaway model

In steady state, driven only by a temperature gradient, the linearized BTE can be written as

\[\mathbf{v}_\lambda \cdot \nabla T \,\frac{\partial n_{\lambda}^{(0)}}{\partial T} = \left(\frac{\partial n_\lambda}{\partial t}\right)_{\text{coll}}. \tag{1}\]

Callaway splits the collision term into two parts:

\[\left(\frac{\partial n_\lambda}{\partial t}\right)_{\text{coll}} = -\frac{n_\lambda - n_{\lambda}^{(d)}}{\tau_{N,\lambda}} -\frac{n_\lambda - n_{\lambda}^{(0)}}{\tau_{R,\lambda}}. \tag{2}\]

The “displaced Planck distribution” is

\[n_{\lambda}^{(d)} = \left[ \exp\left( \frac{\hbar\omega_\lambda - \boldsymbol{\Lambda}\cdot\mathbf{k}_\lambda}{k_B T} \right) -1 \right]^{-1}, \tag{3}\]

where $\boldsymbol{\Lambda}$ is a small vector describing the collective drift of the phonon system, aligned with $\nabla T$.

3. First-order expansion of the displaced distribution: from energy derivative to temperature derivative

Introduce the dimensionless variable

\[x_\lambda = \frac{\hbar\omega_\lambda}{k_B T}.\]

Expanding Eq. (3) to first order in $\boldsymbol{\Lambda}\cdot\mathbf{k}_\lambda$, we obtain

\[n_{\lambda}^{(d)} \simeq n_{\lambda}^{(0)} + \frac{\partial n_{\lambda}^{(0)}}{\partial(\hbar\omega_\lambda)}\, (\boldsymbol{\Lambda}\cdot\mathbf{k}_\lambda). \tag{4}\]

Convert the derivative with respect to energy into a temperature derivative:

\[n_{\lambda}^{(d)} \simeq n_{\lambda}^{(0)} - \frac{\partial n_{\lambda}^{(0)}}{\partial T}\, \frac{\boldsymbol{\Lambda}\cdot\mathbf{k}_\lambda}{k_B T}. \tag{5}\]

4. Linearized BTE

Insert

\[n_\lambda = n_{\lambda}^{(0)} + n_{1,\lambda}\]

and Eq. (5) into Eqs. (1) and (2), keeping only first-order terms.
Left-hand side:

\[\mathbf{v}_\lambda \cdot \nabla T \,\frac{\partial n_{\lambda}^{(0)}}{\partial T}.\]

Right-hand side:

\[-\frac{n_\lambda - n_{\lambda}^{(d)}}{\tau_{N,\lambda}} -\frac{n_\lambda - n_{\lambda}^{(0)}}{\tau_{R,\lambda}} = -\left(\frac{1}{\tau_{N,\lambda}}+\frac{1}{\tau_{R,\lambda}}\right)n_{1,\lambda} + \frac{n_{\lambda}^{(d)}-n_{\lambda}^{(0)}}{\tau_{N,\lambda}}.\]

Thus,

\[\mathbf{v}_\lambda \cdot \nabla T \,\frac{\partial n_{\lambda}^{(0)}}{\partial T} = -\left(\frac{1}{\tau_{N,\lambda}}+\frac{1}{\tau_{R,\lambda}}\right)n_{1,\lambda} + \frac{n_{\lambda}^{(d)}-n_{\lambda}^{(0)}}{\tau_{N,\lambda}}. \tag{6}\]

Define the combined relaxation time (“N+R combined”)

\[\frac{1}{\tau_{c,\lambda}} = \frac{1}{\tau_{N,\lambda}}+\frac{1}{\tau_{R,\lambda}}. \tag{7}\]

Solve for $n_{1,\lambda}$:

\[n_{1,\lambda} = \tau_{c,\lambda}\,\mathbf{v}_\lambda\cdot\nabla T\, \frac{\partial n_{\lambda}^{(0)}}{\partial T} + \frac{\tau_{c,\lambda}}{\tau_{N,\lambda}}\left(n_{\lambda}^{(d)}-n_{\lambda}^{(0)}\right). \tag{8}\]

Insert Eq. (5):

\[n_{1,\lambda} = \tau_{c,\lambda}\,\frac{\partial n_{\lambda}^{(0)}}{\partial T} \left[ \mathbf{v}_\lambda\cdot\nabla T - \frac{\boldsymbol{\Lambda}\cdot\mathbf{k}_\lambda}{k_B T} \frac{1}{\tau_{N,\lambda}} \right]. \tag{9}\]

Interpretation:

  • First term: RTA-like, except the relaxation time becomes $\tau_c$.
  • Second term: the correction involving “$\boldsymbol{\Lambda}$”, originating entirely from momentum conservation of N processes.

5. Determining the drift parameter from momentum conservation of N processes

Physical condition: normal processes do not change the total crystal momentum, hence

\[\sum_\lambda \hbar \mathbf{k}_\lambda \left(\frac{\partial n_\lambda}{\partial t}\right)_{N} = -\sum_\lambda \hbar \mathbf{k}_\lambda \frac{n_\lambda - n_{\lambda}^{(d)}}{\tau_{N,\lambda}} =0. \tag{10}\]

When the temperature gradient is one-dimensional, $\boldsymbol{\Lambda}$ is parallel to $\nabla T$, so we write

\[\boldsymbol{\Lambda} = -\beta\,\nabla T, \tag{11}\]

where $\beta$ is an “effective time–like parameter”.

Substituting Eqs. (9) and (11) into Eq. (10), and using

\[C_\lambda = \hbar\omega_\lambda\,\frac{\partial n_{\lambda}^{(0)}}{\partial T}\]

(the modal heat capacity), one can obtain $\beta$ in the discrete-sum form

\[\beta = \frac{ \displaystyle\sum_\lambda C_\lambda v_{\lambda x}^2\,\tau_{c,\lambda}^2/\tau_{N,\lambda} }{ \displaystyle\sum_\lambda C_\lambda v_{\lambda x}^2 \left(1-\tau_{c,\lambda}/\tau_{N,\lambda}\right) }. \tag{12}\]

This is the “locking mechanism” of the Callaway model, linking the drift strength $\beta$ to the modal relaxation times $\tau_N$ and $\tau_R$.

6. Total thermal conductivity

The heat flux along the $x$ direction is

\[J_x = \frac{1}{V}\sum_\lambda \hbar\omega_\lambda v_{\lambda x}\,n_{1,\lambda}.\]

Together with Fourier’s law,

\[J_x = -\kappa\,\frac{\partial T}{\partial x},\]

Eqs. (9) and (11) lead to the decomposition

\[\kappa = \kappa_1 + \kappa_2.\]

6.1 First term: RTA with the combined relaxation time $\tau_c$

This term resembles the conventional RTA expression, except that $\tau$ is replaced with $\tau_c$:

\[\kappa_1 = \frac{1}{V} \sum_\lambda C_\lambda v_{\lambda x}^2 \tau_{c,\lambda}. \tag{13}\]

In the absence of N processes ($\tau_{N,\lambda}\to\infty$),
$\tau_{c,\lambda} \to \tau_{R,\lambda}$, and Eq. (13) reduces to the familiar RTA formula.

6.2 Second term: Callaway correction $\kappa_2$

The contribution induced by normal processes is

\[\kappa_2 = \frac{1}{V} \frac{ \left[ \displaystyle\sum_\lambda C_\lambda v_{\lambda x}^2\,\tau_{c,\lambda}^2/\tau_{N,\lambda} \right]^2 }{ \displaystyle\sum_\lambda C_\lambda v_{\lambda x}^2 \left(1-\tau_{c,\lambda}/\tau_{N,\lambda}\right) }. \tag{14}\]

Intuitive picture:

  • Numerator: roughly the squared sum of all drift-type contributions enabled by N processes.
  • Denominator: the total strength of R processes that pull the distribution back from this drift.
  • When R is strong and N weak, the correction collapses, $\kappa_2\to 0$.
  • When N dominates and R is weak, $\kappa_2$ increases significantly, enhancing the total conductivity — reminiscent of phonon hydrodynamic behavior.

7. Summary


References:

[1] Phys. Rev. 113, 1046–1051 (1959).

[2] Phys. Rev. B 88, 144302 (2013).

[3] Phys. Rev. B 90, 035203 (2014).